Ejemplo n.º 1
0
def load_model_gates(model_path, params):
    state_dict = torch.load(model_path)
    model_params = params['model_params']
    fake_init_gates = GateInitializer.get_fake_init_gates(params['gate_init_multi_heuristic_params']['num_gates'])
    model = DepthOneModel(fake_init_gates, model_params)
    model.load_state_dict(state_dict)
    return model.get_gates()
Ejemplo n.º 2
0
def cross_validate_accuracy_over_saved_results(path_to_results,
                                               stepsize,
                                               n_steps,
                                               nfolds=20,
                                               starting_fold=30):
    path_to_params = os.path.join(path_to_results, 'params.yaml')

    params = TransformParameterParser(path_to_params).parse_params()
    print(params)
    cur_params = deepcopy(params)

    #evauntually uncomment this leaving asis in order ot keep the same results as before to compare.
    set_random_seeds(params)
    data_input = DataInput(params['data_params'])
    te_accs = []
    pushed_gates_per_fold = []
    starting_gates_per_fold = []
    diffs_per_fold = []

    for fold in range(starting_fold):
        data_input.split_data()

    for fold in range(starting_fold, nfolds + starting_fold):
        print('Running fold %d' % fold)
        cur_params['save_dir'] = os.path.join(params['save_dir'],
                                              'run%d' % fold)
        data_input.split_data()
        best_tr_acc, starting_gate, best_gate = push_converged_boundaries_given_data_input_and_params(
            cur_params, data_input, stepsize, n_steps, path_to_params)

        model = DepthOneModel([[['D1', best_gate[0], best_gate[1]],
                                ['D2', best_gate[2], best_gate[3]]]],
                              params['model_params'])
        fit_classifier_params(
            model, data_input,
            params['train_params']['learning_rate_classifier'])
        te_acc = compute_te_acc(model, data_input)
        print('te acc for fold %d is %.3f' % (fold, te_acc))
        te_accs.append(te_acc)
        pushed_gates_per_fold.append(best_gate)
        starting_gates_per_fold.append(starting_gate)
        diffs_per_fold.append(get_diff_between_gates(starting_gate, best_gate))
        print('Diff: ', get_diff_between_gates(starting_gate, best_gate))

    print('Te accs:', te_accs)
    print('Diffs per fold:', diffs_per_fold)
    with open(
            os.path.join(path_to_results,
                         'expanded_boundaries_te_accs_per_fold.pkl'),
            'wb') as f:
        pickle.dump(te_accs, f)
    with open(
            os.path.join(path_to_results,
                         'expanded_boundaries_diffs_per_fold.pkl'), 'wb') as f:
        pickle.dump(diffs_per_fold, f)
    with open(
            os.path.join(path_to_results,
                         'expanded_boundaries_best_pushed_gates_per_fold.pkl'),
            'wb') as f:
        pickle.dump(pushed_gates_per_fold, f)
def get_data_inside_both_visually_correct_and_learned_gate(
        path_to_params_learned):
    matplotlib.rcParams.update({'font.size': 22})

    path_to_params_learned, model_learned, data_input = load_saved_model_and_matching_data_input(
        path_to_params_learned)

    vis_correct_gate = [[['D1', 0.,
                          model_learned.get_gate_tree()[0][0][2]],
                         ['D2',
                          model_learned.get_gate_tree()[0][1][1], .75]]]
    vis_correct_model = DepthOneModel(vis_correct_gate,
                                      path_to_params_learned['model_params'])

    plotter_model = DataAndGatesPlotterDepthOne(
        model_learned, np.concatenate(data_input.x_tr))
    plotter_vis_corr = DataAndGatesPlotterDepthOne(
        vis_correct_model, np.concatenate(data_input.x_tr))

    model_learned_data_inside_gate = get_data_inside_gate(
        plotter_model, data_input, model_learned)
    vis_corr_data_inside_gate = get_data_inside_gate(plotter_vis_corr,
                                                     data_input,
                                                     vis_correct_model)

    with open('model_feat_diff_data_inside_gate.pkl', 'wb') as f:
        pickle.dump(model_learned_data_inside_gate, f)

    with open('vis_corr_data_inside_gate.pkl', 'wb') as f:
        pickle.dump(vis_corr_data_inside_gate, f)

    return model_learned_data_inside_gate, vis_corr_data_inside_gate
 def get_model_with_set_position_and_size(self, x_pos, y_pos, size):
     model = DepthOneModel(self.get_init_gate(x_pos, y_pos, size),
                           self.params['model_params'])
     train_params = self.params['train_params']
     fit_classifier_params(model, self.data_input,\
         train_params['learning_rate_classifier'],
         l1_reg_strength=train_params['l1_reg_strength'])
     return model
Ejemplo n.º 5
0
def get_next_gate_tree_by_log_loss(unused_gate_trees, data_input, params, model=None):
    if model:
        losses = []
        for gate_tree in unused_gate_trees:
            dummy_model_state = deepcopy(model.state_dict())
            dummy_model = DepthOneModel(model.get_gate_tree(), params['model_params'])
            dummy_model.load_state_dict(dummy_model_state)

            dummy_model.add_node(gate_tree)
            performance_tracker = run_train_model(dummy_model, params['train_params'], data_input)
            losses.append(dummy_model(data_input.x_tr, data_input.y_tr)['log_loss'].cpu().detach().numpy())
        losses = np.array(losses)
        best_gate_idx = np.argmin(losses[~np.isnan(losses)])
    else:
        losses = []
        for gate_tree in unused_gate_trees:
            model = DepthOneModel([gate_tree], params['model_params'])
            performance_tracker = run_train_model(model, params['train_params'], data_input)
            losses.append(model(data_input.x_tr, data_input.y_tr)['log_loss'].cpu().detach().numpy())

        losses = np.array(losses)
        best_gate_idx = np.argmin(losses[~np.isnan(losses)])
    best_gate = unused_gate_trees[best_gate_idx]
    del unused_gate_trees[best_gate_idx]
    return best_gate, unused_gate_trees
def load_saved_results(path_to_params, ret_params_too=False):
    start_time = time.time()

    params = TransformParameterParser(path_to_params).parse_params()
    print(params)

    torch.manual_seed(params['random_seed'])
    np.random.seed(params['random_seed'])

    data_input = load_and_prepare_data_input(params)

    model = DepthOneModel([[['D1', 0, 0], ['D2', 0, 0]]],
                          params['model_params'])
    model.load_state_dict(
        torch.load(os.path.join(params['save_dir'], 'model.pkl')))
    if ret_params_too:
        return data_input, model, params
    return data_input, model
Ejemplo n.º 7
0
def get_next_best_gate(remaining_gates, data_input, params, model):
    losses = []
    trackers = []
    for gate in remaining_gates:
        dummy_model_state = deepcopy(model.state_dict())
        init_gates = rectangularize_gates(model)
        dummy_model = DepthOneModel(init_gates, params['model_params'])
        dummy_model.load_state_dict(dummy_model_state)
        dummy_model.add_node(gate)
        trackers.append(run_train_model(
            dummy_model, params['train_params'], data_input
        ))
        losses.append(
            dummy_model(
                data_input.x_tr, data_input.y_tr
            )['loss'].cpu().detach().numpy()
        )
    losses = np.array(losses)
    best_gate_idx = np.argmin(losses[~np.isnan(losses)])

    best_gate = remaining_gates[best_gate_idx]
    remaining_gates = [
        gate for g, gate in enumerate(remaining_gates)
        if not g == best_gate_idx
    ]
    best_tracker = trackers[best_gate_idx]
    return best_gate, remaining_gates, best_tracker
def load_saved_model_and_matching_data_input(path_to_params):
    def set_random_seeds(params):
        torch.manual_seed(params['random_seed'])
        np.random.seed(params['random_seed'])

    start_time = time.time()

    params = TransformParameterParser(path_to_params).parse_params()
    print(params)

    #evauntually uncomment this leaving asis in order ot keep the same results as before to compare.
    set_random_seeds(params)

    data_input = DataInput(params['data_params'])
    data_input.split_data()
    print('%d samples in the training data' % len(data_input.x_tr))

    with open(os.path.join(params['save_dir'], 'trackers.pkl'), 'rb') as f:
        trackers = pickle.load(f)

    with open(os.path.join(params['save_dir'], 'transformer.pkl'), 'rb') as f:
        umapper = pickle.load(f)
    # FOR DEBUGGING ONLY
    #params['transform_params']['cells_to_subsample'] = 10
    data_input.embed_data(\
        umapper,
        cells_to_subsample=params['transform_params']['cells_to_subsample'],
        use_labels_to_transform_data=params['transform_params']['use_labels_to_transform_data']
    )
    data_input.normalize_data()
    data_input.convert_all_data_to_tensors()

    model = DepthOneModel([[['D1', 0, 0], ['D2', 0, 0]]],
                          params['model_params'])
    model.load_state_dict(
        torch.load(os.path.join(params['save_dir'], 'model.pkl')))
    return params, model, data_input, umapper
Ejemplo n.º 9
0
def get_model_with_new_gate(gate_idx, new_gate, params, model_gates, data_input):
    gates = model_gates
    if type(new_gate[0]) == float:
        new_gate = [['D1', new_gate[0], new_gate[1]], ['D2', new_gate[2], new_gate[3]]]
    formatted_gates = []
    for gate in gates:
        formatted_gates.append([
            ['D1', gate[0], gate[1]],
            ['D2', gate[2], gate[3]]
        ])
    formatted_gates[gate_idx] = new_gate
    train_params = params['train_params']
    model = DepthOneModel(formatted_gates, params['model_params'])
    fit_classifier_params(model, data_input,\
        train_params['learning_rate_classifier'],
        l1_reg_strength=train_params['l1_reg_strength'])
    return model
Ejemplo n.º 10
0
def initialize_model_with_best_gate(potential_gates, data_input, params):
    losses = []
    models = []
    for g, gate in enumerate(potential_gates):
        model = DepthOneModel([gate], params['model_params'])
        tracker = run_train_model(model, params['train_params'], data_input)
        losses.append(
            model(data_input.x_tr,
                  data_input.y_tr)['loss'].cpu().detach().numpy())
        models.append(model)
    best_gate_idx = np.argmin(np.array(losses)[~np.isnan(losses)])
    best_model = models[best_gate_idx]
    remaining_gates = [
        gate for g, gate in enumerate(potential_gates)
        if not g == best_gate_idx
    ]

    return best_model, remaining_gates, tracker
Ejemplo n.º 11
0
def initialize_model(model_params, init_gate_tree):
    model = DepthOneModel(init_gate_tree, model_params)
    return model
Ejemplo n.º 12
0
def push_converged_boundaries_given_data_input_and_params(
        params, data_input, stepsize, n_steps, path_to_params):
    start_time = time.time()
    print('%d samples in the training data' % len(data_input.x_tr))

    with open(os.path.join(params['save_dir'], 'tracker.pkl'), 'rb') as f:
        tracker = pickle.load(f)

    with open(os.path.join(params['save_dir'], 'transformer.pkl'), 'rb') as f:
        umapper = pickle.load(f)
    # FOR DEBUGGING ONLY
    #params['transform_params']['cells_to_subsample'] = 10
    data_input.embed_data(\
        umapper,
        cells_to_subsample=params['transform_params']['cells_to_subsample'],
        use_labels_to_transform_data=params['transform_params']['use_labels_to_transform_data']
    )
    data_input.normalize_data()
    data_input.convert_all_data_to_tensors()

    model = DepthOneModel([[['D1', 0, 0], ['D2', 0, 0]]],
                          params['model_params'])
    model.load_state_dict(
        torch.load(os.path.join(params['save_dir'], 'model.pkl')))

    init_acc = tracker.metrics['tr_acc'][-1]
    cur_best_acc = init_acc
    starting_gate = model.get_gates()[0]
    cur_gate = copy.deepcopy(starting_gate)
    cur_best_gate = copy.deepcopy(cur_gate)
    print('Starting gate:', starting_gate)
    counter = 0
    for left_step in range(n_steps):
        cur_gate[0] = starting_gate[0] - left_step * stepsize
        for right_step in range(n_steps):
            cur_gate[1] = starting_gate[1] + right_step * stepsize
            for down_step in range(n_steps):
                cur_gate[2] = starting_gate[2] - down_step * stepsize
                for up_step in range(n_steps):
                    cur_gate[3] = starting_gate[3] + up_step * stepsize
                    model = DepthOneModel([[['D1', cur_gate[0], cur_gate[1]],
                                            ['D2', cur_gate[2], cur_gate[3]]]],
                                          params['model_params'])
                    fit_classifier_params(
                        model, data_input,
                        params['train_params']['learning_rate_classifier'])
                    #                    model.nodes = None
                    #                    model.init_nodes([[['D1', cur_gate[0], cur_gate[1]], ['D2', cur_gate[2], cur_gate[3]]]])
                    cur_acc = compute_tr_acc(model, data_input)
                    #cur_acc = performance_tracker.metrics['tr_acc'][-1]
                    counter += 1
                    #print(counter)
                    #print(cur_gate)
                    #print(cur_acc)
                    if cur_acc > cur_best_acc:
                        cur_best_acc = cur_acc
                        cur_best_gate = copy.deepcopy(cur_gate)

    print('Final acc %.3f, Initial acc %.3f' % (cur_best_acc, init_acc))
    print('Init/final gates', starting_gate, cur_best_gate)
    print('time taken: %d' % (time.time() - start_time))
    return cur_best_acc, starting_gate, cur_best_gate
Ejemplo n.º 13
0
def initialize_model(model_params, init_gate_tree):
    if model_params['depth_one_disjunction_of_all_gates']:
        model = DisjunctiveDepthOneModel(init_gate_tree, model_params)
    else:
        model = DepthOneModel(init_gate_tree, model_params)
    return model