Ejemplo n.º 1
0
import cv2
import numpy as np
import math

from utils.Functions import getSkeletonOfImage, getCrossPointsOfSkeletonLine, getEndPointsOfSkeletonLine, \
    removeShortBranchesOfSkeleton

path = "test_images/1133壬.jpg"

img = cv2.imread(path, 0)

_, img_bit = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)

# get skeleton
skeleton = getSkeletonOfImage(img_bit)

end_points = getEndPointsOfSkeletonLine(skeleton)
cross_points = getCrossPointsOfSkeletonLine(skeleton)

print("end points num: %d" % len(end_points))
print("cross points num: %d" % len(cross_points))

cv2.imshow("skeleton original", skeleton)

# length threshold
skeleton = removeShortBranchesOfSkeleton(skeleton, length_threshold=30)

cv2.imshow("skeleton smoothed", skeleton)

cv2.waitKey(0)
cv2.destroyAllWindows()
Ejemplo n.º 2
0
def autoSmoothContoursOfComponent(component, blockSize=3, ksize=3, k=0.04):
    """

    :param component:
    :return:
    """
    if component is None:
        return
    # 5. Using corner detection to get corner regions
    corner_component = np.float32(component)
    dst = cv2.cornerHarris(corner_component,
                           blockSize=blockSize,
                           ksize=ksize,
                           k=k)
    dst = cv2.dilate(dst, None)

    corners_area_points = []
    for y in range(dst.shape[0]):
        for x in range(dst.shape[1]):
            if dst[y][x] > 0.1 * dst.max():
                corners_area_points.append((x, y))
    print("corner area points num: %d" % len(corners_area_points))

    # 6. Determine center points of corner areas
    blank_gray = createBlankGrayscaleImage(component)
    for pt in corners_area_points:
        blank_gray[pt[1]][pt[0]] = 0.0

    rectangles = getAllMiniBoundingBoxesOfImage(blank_gray)

    corners_area_center_points = []
    for rect in rectangles:
        corners_area_center_points.append(
            (rect[0] + int(rect[2] / 2.), rect[1] + int(rect[3] / 2.)))
    print("corner area center points num: %d" %
          len(corners_area_center_points))

    # based the distance to end points and cross points, remove extra corners area center points

    component_skeleton = getSkeletonOfImage(component)
    end_points = getEndPointsOfSkeletonLine(component_skeleton)
    cross_points = getCrossPointsOfSkeletonLine(component_skeleton)

    # remove extra branches
    # img_skeleton = removeBranchOfSkeletonLine(img_skeleton, end_points, cross_points)
    # end_points = getEndPointsOfSkeletonLine(img_skeleton)
    # cross_points = getEndPointsOfSkeletonLine(img_skeleton)

    # detect valid corner region center points closed to end points and cross points
    valid_corners_area_center_points = []
    dist_threshold = 40
    for pt in corners_area_center_points:
        is_valid = False
        for ept in end_points:
            dist = math.sqrt((pt[0] - ept[0])**2 + (pt[1] + ept[1])**2)
            if dist <= dist_threshold:
                is_valid = True
                break
        if is_valid:
            valid_corners_area_center_points.append(pt)
            continue
        for cpt in cross_points:
            dist = math.sqrt((pt[0] - cpt[0])**2 + (pt[1] - cpt[1])**2)
            if dist <= dist_threshold:
                is_valid = True
                break
        if is_valid:
            valid_corners_area_center_points.append(pt)

    print("valid corner area center points num: %d" %
          len(valid_corners_area_center_points))

    del blank_gray

    # 7. Get all contours of component
    component_contours = getContourOfImage(component)
    contours = getConnectedComponents(component_contours, connectivity=8)
    print("contours num: %d" % len(contours))

    # 8. Process contours to get closed and 1-pixel width contours
    contours_processed = []
    for cont in contours:
        cont = removeBreakPointsOfContour(cont)
        contours_processed.append(cont)
    print("contours processed num: %d" % len(contours_processed))

    # 9. Find corner points of conthours closed to corner region center points. For each contour, there is a coner points list.
    contours_corner_points = []
    for i in range(len(contours_processed)):
        corner_points = []
        contour = contours_processed[i]

        for pt in valid_corners_area_center_points:
            x0 = target_x = pt[0]
            y0 = target_y = pt[1]
            min_dist = 10000
            # search target point in region: 20 * 20 of center is (x0, y0)
            for y in range(y0 - 10, y0 + 10):
                for x in range(x0 - 10, x0 + 10):
                    if contour[y][x] == 255:
                        continue
                    dist = math.sqrt((x - x0)**2 + (y - y0)**2)
                    if dist < min_dist:
                        min_dist = dist
                        target_x = x
                        target_y = y
            if min_dist < 5:
                corner_points.append((target_x, target_y))

        contours_corner_points.append(corner_points)
    total_num = 0
    for cont in contours_corner_points:
        total_num += len(cont)
    if total_num == len(valid_corners_area_center_points):
        print("corner points not ignored")
    else:
        print("corner points be ignored")

    # 10. Separate contours into sub-contours based on the corner points on different contours
    sub_contours = []
    for i in range(len(contours_processed)):
        contour = contours_processed[i]
        corner_points = contours_corner_points[i]
        # sorted the contour
        contour_points_sorted = sortPointsOnContourOfImage(contour)
        # sorted the corner points
        corner_points_sorted = []
        for pt in contour_points_sorted:
            if pt in corner_points:
                corner_points_sorted.append(pt)
        # sepate the contour into sub-contour
        for j in range(len(corner_points_sorted)):
            start_pt = corner_points_sorted[j]
            end_pt = None
            if j == len(corner_points_sorted) - 1:
                end_pt = corner_points_sorted[0]
            else:
                end_pt = corner_points_sorted[j + 1]
            # find indexes of start point and end point in contour_points_sorted
            start_index = contour_points_sorted.index(start_pt)
            end_index = contour_points_sorted.index(end_pt)

            # separate
            sub_contour = None
            if start_index <= end_index:
                if end_index == len(contour_points_sorted) - 1:
                    sub_contour = contour_points_sorted[
                        start_index:len(contour_points_sorted)]
                    sub_contour.append(contour_points_sorted[0])
                else:
                    sub_contour = contour_points_sorted[start_index:end_index +
                                                        1]
            else:
                sub_contour = contour_points_sorted[
                    start_index:len(contour_points_sorted
                                    )] + contour_points_sorted[0:end_index + 1]

            sub_contours.append(sub_contour)
    print("sub contours num: %d" % len(sub_contours))

    # 11. Beizer curve fit all sub-contours under maximal error
    max_error = 100
    sub_contours_smoothed = []

    for id in range(len(sub_contours)):
        # single sub-contour
        sub_contour = np.array(sub_contours[id])

        if len(sub_contour) < 2:
            continue
        beziers = fitCurve(sub_contour, maxError=max_error)
        sub_contour_smoothed = []

        for bez in beziers:
            bezier_points = draw_cubic_bezier(bez[0], bez[1], bez[2], bez[3])
            sub_contour_smoothed += bezier_points

        sub_contours_smoothed.append(sub_contour_smoothed)

    # 12. Merge sub-contours together
    img_smoothed_gray = createBlankGrayscaleImage(component)

    # merge all smoothed sub-contours
    for sub in sub_contours_smoothed:
        for pt in sub:
            img_smoothed_gray[pt[1]][pt[0]] = 0.0
    # process smoothed contours to get closed and 1-pixel width
    img_smoothed_gray = getSkeletonOfImage(img_smoothed_gray)

    # remove single points that 8

    cv2.imshow("img_smoothed_gray", img_smoothed_gray)

    contours_smoothed = getConnectedComponents(img_smoothed_gray)

    if len(contours_smoothed) == 1:
        # no hole exist, directly fill black in the contour
        cont = contours_smoothed[0]
        cont_points = sortPointsOnContourOfImage(cont)
        cont_points = np.array([cont_points], "int32")

        fill_contour_smooth = np.ones_like(component) * 255
        fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
        fill_contour_smooth = cv2.fillPoly(fill_contour_smooth, cont_points, 0)

        return fill_contour_smooth
    else:
        # exist hole, should processed
        print("there are holes!")
        fill_img_list = []
        hole_points = []
        for cont in contours_smoothed:
            cont_points = sortPointsOnContourOfImage(cont)
            cont_points = np.array([cont_points], "int32")

            fill_contour_smooth = np.ones_like(component) * 255
            fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
            fill_contour_smooth = cv2.fillPoly(fill_contour_smooth,
                                               cont_points, 0)

            valid_num = same_num = 0
            for y in range(component.shape[0]):
                for x in range(component.shape[1]):
                    if component[y][x] == 0.0:
                        valid_num += 1
                        if fill_contour_smooth[y][x] == 0.0:
                            same_num += 1

            if 1.0 * same_num / valid_num > 0.8:
                fill_img_list.append(fill_contour_smooth)
                print("ratio: %f" % (1.0 * same_num / valid_num))
            else:
                print("ratio: %f" % (1.0 * same_num / valid_num))
                for y in range(fill_contour_smooth.shape[0]):
                    for x in range(fill_contour_smooth.shape[1]):
                        if fill_contour_smooth[y][x] == 0.0:
                            hole_points.append((x, y))

        # merge filled images
        blank_temp = np.ones_like(component) * 255
        for fl in fill_img_list:
            for y in range(fl.shape[0]):
                for x in range(fl.shape[1]):
                    if fl[y][x] == 0.0:
                        blank_temp[y][x] = fl[y][x]
        # hole points
        for pt in hole_points:
            blank_temp[pt[1]][pt[0]] = 255

        return blank_temp
Ejemplo n.º 3
0
def autoStrokeExtracting(index, image, threshold_value=200):
    """
    Automatic strokes extracting
    :param image: grayscale image
    :return: strokes images with same size
    """
    strokes = []
    if image is None:
        return strokes

    # get connected components from the grayscale image, not for the binary image.
    contour_img = getContourImage(image)
    contours = getConnectedComponents(contour_img)  # no holes, num=1, holes exist, num >= 2
    print("contours num: %d" % len(contours))

    corners_points_sorted = []
    for ct in contours:
        points = sortPointsOnContourOfImage(ct)
        corners_points_sorted.append(points)
    if len(corners_points_sorted) == 1:
        print("No holes exist!")
    elif len(corners_points_sorted) >= 2:
        print("Holes exist!")

    # grayscale image to binary image
    _, img_bit = cv2.threshold(image, threshold_value, 255, cv2.THRESH_BINARY)

    # skeleton image of width 1 pixel of binray image
    skeleton_img = getSkeletonOfImage(img_bit)
    skeleton_img = removeExtraBranchesOfSkeleton(skeleton_img)
    end_points = getEndPointsOfSkeletonLine(skeleton_img)   # end points
    cross_points = getCrossPointsOfSkeletonLine(skeleton_img)   # croiss points

    print("end points num: %d" % len(end_points))
    print("cross points num: %d" % len(cross_points))

    if len(cross_points) == 0:
        print("no cross points!")
        strokes.append(image)
        return strokes

    # corner area points
    corners_all_points = getCornersPoints(image.copy(), contour_img, blockSize=3, ksize=3, k=0.04)
    corners_points = getValidCornersPoints(corners_all_points, cross_points, end_points, distance_threshold=30)
    print("corners points num: %d" % len(corners_points))

    if len(corners_points) == 0:
        print("no corner point")
        strokes.append(image)
        return strokes

    contour_rgb = cv2.cvtColor(contour_img, cv2.COLOR_GRAY2RGB)
    contour_gray = cv2.cvtColor(contour_rgb, cv2.COLOR_RGB2GRAY)
    _, contour_gray = cv2.threshold(contour_gray, 200, 255, cv2.THRESH_BINARY)

    for pt in corners_points:
        contour_rgb[pt[1]][pt[0]] = (0, 0, 255)

    # cluster corners points based on the cross point
    corner_points_cluster = getClusterOfCornerPoints(corners_points, cross_points)

    # cropping lines based on the corner points
    crop_lines = getCropLines(corner_points_cluster, None)

    for line in crop_lines:
        cv2.line(contour_rgb, line[0], line[1], (0, 255, 0), 1)
        cv2.line(contour_gray, line[0], line[1], 0, 1)

    # split contour to components
    ret, labels = cv2.connectedComponents(contour_gray, connectivity=4)
    components = []
    for r in range(1, ret):
        img_ = createBlankGrayscaleImage(contour_gray)
        for y in range(contour_gray.shape[0]):
            for x in range(contour_gray.shape[1]):
                if labels[y][x] == r:
                    img_[y][x] = 0.0
        if img_[0][0] != 0.0 and isValidComponent(img_, img_bit):
            components.append(img_)

    print("components num : %d" % len(components))
    used_components = []
    component_line_relation = {}  # {component_id: [line_id1, line_id2]}

    # merge contour to components
    for i in range(len(components)):
        merge_points = []
        for y in range(1, contour_gray.shape[0]-1):
            for x in range(1, contour_gray.shape[1]-1):
                if contour_gray[y][x] == 0.0:
                    # 4 nearby pixels should be black in components
                    if components[i][y-1][x] == 0.0 or components[i][y][x+1] == 0.0 or components[i][y+1][x] == 0.0 or \
                            components[i][y][x-1] == 0.0:
                        merge_points.append((x, y))
        for pt in merge_points:
            components[i][pt[1]][pt[0]] = 0.0
    # merge cropping lines on the components
    for i in range(len(crop_lines)):
        components_id = []
        line = crop_lines[i]
        for j in range(len(components)):
            dist_startpt = getDistanceBetweenPointAndComponent(line[0], components[j])
            # print("dist startpt:%f" % dist_startpt)
            dist_endpt = getDistanceBetweenPointAndComponent(line[1], components[j])
            # print("dist end pt: %f" % dist_endpt)

            if dist_startpt < 3 and dist_endpt < 3:
                cv2.line(components[j], line[0], line[1], 0, 1)
                components_id.append(j)

            if len(components_id) >= 2:
                break

    # find overlap region components
    overlap_components = []
    for i in range(len(components)):
        part = components[i]
        part_lines = []
        part_lines_id = []
        for j in range(len(crop_lines)):
            line = crop_lines[j]
            if part[line[0][1]][line[0][0]] == 0.0 and part[line[1][1]][line[1][0]] == 0.0:
                part_lines.append(line)
                part_lines_id.append(j)

        # check number of lines == 4 and cross each other
        if len(part_lines) == 4:
            points_set = set()
            for line in part_lines:
                points_set.add(line[0])
                points_set.add(line[1])
            if len(points_set) == 4:
                # only 4 points
                overlap_components.append(part)
                used_components.append(i)
                component_line_relation[i] = part_lines_id

    print("overlap components num: %d" % len(overlap_components))
    print(component_line_relation)

    # cluster components based on the cropping lines
    for i in range(len(components)):
        part = components[i]
        part_lines = [] # used to detect overlap region components.

        # find single part is stroke
        is_single = True
        for line in crop_lines:
            x1 = line[0][0]; y1 = line[0][1]
            x2 = line[1][0]; y2 = line[1][1]
            if part[y1][x1] == 0.0 and part[y2][x2] != 0.0 or part[y1][x1] != 0.0 and part[y2][x2] == 0.0:
                is_single = False
                break
            if part[y1][x1] == 0.0 and part[y2][x2] == 0.0:
                part_lines.append(line)

        if is_single and isIndependentCropLines(part_lines):
            strokes.append(part)
            used_components.append(i)

    print("single stroke num: %d" % len(strokes))
    print("used components num: %d" % len(used_components))

    # cluster components based on the cropping lines
    for i in range(len(components)):
        if i in used_components:
            continue
        # find corresponding crop lines
        lines_id = []
        for j in range(len(crop_lines)):
            line = crop_lines[j]
            if components[i][line[0][1]][line[0][0]] == 0.0 and components[i][line[1][1]][line[1][0]] != 0.0:
                lines_id.append(j)
            if components[i][line[0][1]][line[0][0]] != 0.0 and components[i][line[1][1]][line[1][0]] == 0.0:
                lines_id.append(j)

        if len(lines_id) == 0:
            continue
        component_line_relation[i] = lines_id
        used_components.append(i)

    # cluster components based on the relations and merge those related components
    clusters = []
    for k1, v1 in component_line_relation.items():

        cluster = [k1]; value_sets = [set(v1)]

        for k2, v2 in component_line_relation.items():
            is_related = True
            for value in value_sets:
                if not value.intersection(set(v2)):
                    is_related = False
                    break
            if is_related and k2 not in cluster:
                cluster.append(k2)
                value_sets.append(set(v2))
        cluster = sorted(cluster)
        if cluster not in clusters:
            clusters.append(cluster)

    print(clusters)

    # merge components based on the cluster
    for i in range(len(clusters)):
        cluster = clusters[i]
        bk = createBlankGrayscaleImage(image)

        for clt in cluster:
            bk = mergeBkAndComponent(bk, components[clt])

        # add to strokes
        strokes.append(bk)

    # check the stroke is valid
    for i in range(len(strokes)):
        stroke = strokes[i]

    cv2.imshow("radical_%d" % index, contour_rgb)
    cv2.imshow("radical_gray_%d" % index, contour_gray)

    return strokes
Ejemplo n.º 4
0
def main():
    src_path = "../strokes/src_strokes7.png"
    tag_path = "../strokes/tag_strokes7.png"

    src_img = cv2.imread(src_path, 0)
    tag_img = cv2.imread(tag_path, 0)

    # threshold
    _, src_img = cv2.threshold(src_img, 127, 255, cv2.THRESH_BINARY)
    _, tag_img = cv2.threshold(tag_img, 127, 255, cv2.THRESH_BINARY)

    # get the minimum bounding boxs
    src_box = getSingleMaxBoundingBoxOfImage(src_img)
    tag_box = getSingleMaxBoundingBoxOfImage(tag_img)

    # get the region of strokes
    src_region = src_img[src_box[1] - 5:src_box[1] + src_box[3] + 5,
                         src_box[0] - 5:src_box[0] + src_box[2] + 5]
    tag_region = tag_img[tag_box[1] - 5:tag_box[1] + tag_box[3] + 5,
                         tag_box[0] - 5:tag_box[0] + tag_box[2] + 5]

    # get the contour of storkes based on the Canny algorithm

    src_edge = getContourOfImage(src_region)
    tag_edge = getContourOfImage(tag_region)

    cv2.imshow("src edge", src_edge)
    cv2.imshow("tag edge", tag_edge)

    # get the skeletons of strokes based on the thinning algorithm
    src_img_ = src_region != 255
    tag_img_ = tag_region != 255

    src_skel = skeletonize(src_img_)
    tag_skel = skeletonize(tag_img_)

    src_skel = (1 - src_skel) * 255
    tag_skel = (1 - tag_skel) * 255

    src_skel = np.array(src_skel, dtype=np.uint8)
    tag_skel = np.array(tag_skel, dtype=np.uint8)

    src_end_points = getEndPointsOfSkeletonLine(src_skel)
    tag_end_points = getEndPointsOfSkeletonLine(tag_skel)

    src_cross_points = getCrossPointsOfSkeletonLine(src_skel)
    tag_cross_points = getCrossPointsOfSkeletonLine(tag_skel)

    # if len(src_cross_points) > 0:
    #     # exist branches
    #     src_skel = removeBranchOfSkeletonLine(src_skel, src_end_points, src_cross_points)
    #
    # if len(tag_cross_points) > 0:
    #     # exist branches
    #     tag_skel = removeBranchOfSkeletonLine(tag_skel, tag_end_points, tag_cross_points)

    cv2.imshow("src skel", src_skel)
    cv2.imshow("tag skel", tag_skel)

    # split the strokes based on the rule: begin, middle and the end parts.
    src_regions = splitStrokes(src_region, type="LongHeng")
    tag_regions = splitStrokes(tag_region, type="LongHeng")

    print('len src regions: %d' % len(src_regions))
    print('len tag regions: %d' % len(tag_regions))

    cv2.imshow('src begin', src_regions[0])
    cv2.imshow('src middle', src_regions[1])
    cv2.imshow('src end', src_regions[2])

    cv2.imshow("src", src_region)
    cv2.imshow("tag", tag_region)

    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 5
0
def autoStrokeExtractFromComponent(component):
    """
    Automatically strokes extract from the component.
    :param component:
    :return:
    """
    strokes = []
    if component is None:
        return strokes

    # 6. Get skeletons of component.
    comp_skeleton = getSkeletonOfImage(component.copy())
    # cv2.imshow("skeleton_original", comp_skeleton)

    # 7. Process the skeleton by remove extra branches.
    comp_skeleton = removeShortBranchesOfSkeleton(comp_skeleton, length_threshold=30)
    # cv2.imshow("skeleton_smoothed", comp_skeleton)

    # 8. Get the end points and cross points after skeleton processed
    end_points = getEndPointsOfSkeletonLine(comp_skeleton)
    cross_points = getCrossPointsOfSkeletonLine(comp_skeleton)
    print("end points num: %d ,and cross points num: %d" % (len(end_points), len(cross_points)))

    # 9. Get contour image of component
    comp_contours_img = getContourImage(component.copy())

    # 10. Detect the number of contours and return all contours
    comp_contours = getConnectedComponents(comp_contours_img, connectivity=8)
    print("contours num: %d" % len(comp_contours))

    # 11. Get points on contours
    corners_points = []
    for cont in comp_contours:
        cont = removeBreakPointsOfContour(cont)
        cont_sorted = sortPointsOnContourOfImage(cont)
        cont_points = rdp(cont_sorted, 5)
        corners_points += cont_points
    print("corner points num:", len(corners_points))

    CORNER_CROSS_DIST_THRESHOLD = 30
    corners_points_merged = []
    for pt in corners_points:
        for cpt in cross_points:
            dist = math.sqrt((pt[0] - cpt[0]) ** 2 + (pt[1] - cpt[1]) ** 2)
            if dist < CORNER_CROSS_DIST_THRESHOLD:
                corners_points_merged.append(pt)
                break
    corners_points = corners_points_merged
    print("merged corner points num:", len(corners_points))

    # # 11. Detect the corner regions of component
    # #       Harris corner detector
    # corner_region_img = np.float32(component.copy())
    # dst = cv2.cornerHarris(corner_region_img, blockSize=3, ksize=3, k=0.04)
    # dst = cv2.dilate(dst, None)
    #
    # # get all points in corners area
    # corners_area_points = []
    # for y in range(dst.shape[0]):
    #     for x in range(dst.shape[1]):
    #         if dst[y][x] > 0.1 * dst.max():
    #             corners_area_points.append((x, y))
    #
    # # get all center points of corner area
    # corners_img = createBlankGrayscaleImage(component)
    # for pt in corners_area_points:
    #     corners_img[pt[1]][pt[0]] = 0.0
    #
    # rectangles = getAllMiniBoundingBoxesOfImage(corners_img)
    #
    # corners_area_center_points = []
    # for rect in rectangles:
    #     corners_area_center_points.append((rect[0] + int(rect[2] / 2.), rect[1] + int(rect[3] / 2.)))
    #
    # # get all corner points in coutour image.
    # corners_points = []
    # for pt in corners_area_center_points:
    #     if comp_contours_img[pt[1]][pt[0]] == 0.0:
    #         corners_points.append(pt)
    #     else:
    #         min_dist = 100000
    #         min_x = min_y = 0
    #         for y in range(comp_contours_img.shape[0]):
    #             for x in range(comp_contours_img.shape[1]):
    #                 cpt = comp_contours_img[y][x]
    #                 if cpt == 0.0:
    #                     dist = math.sqrt((x - pt[0]) ** 2 + (y - pt[1]) ** 2)
    #                     if dist < min_dist:
    #                         min_dist = dist
    #                         min_x = x
    #                         min_y = y
    #         # points on contour
    #         corners_points.append((min_x, min_y))
    print("corners points num: %d" % len(corners_points))

    # 12. Get valid corner points based on the end points and cross points
    corners_points = getValidCornersPoints(corners_points, cross_points, end_points, distance_threshold=30)
    print("corners points num: %d" % len(corners_points))

    if len(corners_points) == 0:
        print("no corner points")
        strokes.append(component)
        return strokes

    # 13. Cluster these corner points based on the distance between them and cross points
    corners_points_cluster = getClusterOfCornerPoints(corners_points, cross_points, threshold_distance=70)
    print("corner points cluster num: %d" % len(corners_points_cluster))
    print(corners_points_cluster)

    # 14. Generate cropping lines between two corner points
    crop_lines = getCropLines(corners_points_cluster, comp_contours)
    print("cropping lines num: %d" % len(crop_lines))

    # 15. Separate the components based on the cropping lines
    component_ = component.copy()

    # add white and 1-pixel width line in component to separate it.
    for line in crop_lines:
        cv2.line(component_, line[0], line[1], 255, 1)

    # 16. Get parts of component.
    comp_parts = []
    # invert color !!!
    component_ = 255 - component_
    ret, labels = cv2.connectedComponents(component_, connectivity=4)
    print(ret)
    for r in range(1, ret):
        img_ = createBlankGrayscaleImage(component_)
        for y in range(component_.shape[0]):
            for x in range(component_.shape[1]):
                if labels[y][x] == r:
                    img_[y][x] = 0.0
        if img_[0][0] != 0.0 and isValidComponent(img_, component):
            comp_parts.append(img_)
    print("parts of component num: %d" % len(comp_parts))

    # 17. Add cropping lines to corresponding parts of component
    # add lines to parts of component.
    for i in range(len(comp_parts)):
        part = comp_parts[i]

        for line in crop_lines:
            start_dist = getDistanceBetweenPointAndComponent(line[0], part)
            end_dist = getDistanceBetweenPointAndComponent(line[1], part)

            if start_dist <= 3 and end_dist <= 3:
                cv2.line(part, line[0], line[1], 0, 1)

    # 18. Find intersection parts of component
    used_index = []
    intersect_parts_index = []
    for i in range(len(comp_parts)):
        part = comp_parts[i]
        num = 0  # number of lines in part
        for line in crop_lines:
            if part[line[0][1]][line[0][0]] == 0.0 and part[line[1][1]][line[1][0]] == 0.0:
                num += 1
        if num == 4:   # 4 lines in one part, this part is the intersection part
            intersect_parts_index.append(i)
            used_index.append(i)
    print("intersection parts num: %d" % len(intersect_parts_index))

    # 19. Find the relation part and crop lines - one line -> one part or three part (part1 + intersect_part + part2)
    intersect_parts_crop_lines_index = []
    for i in range(len(crop_lines)):
        line = crop_lines[i]
        for index in intersect_parts_index:
            intersect_part = comp_parts[index]
            if intersect_part[line[0][1]][line[0][0]] == 0.0 and intersect_part[line[1][1]][line[1][0]] == 0.0:
                # this line in intersection part
                intersect_parts_crop_lines_index.append(i)
    print("crop lines in intersection part num: %d" % len(intersect_parts_crop_lines_index))

    # Cropping lines are divided into two types: in intersect part and not in this part.
    line_parts_relation = []
    for index in intersect_parts_crop_lines_index:
        line = crop_lines[index]

        # line and parts that are connected by this crop line: A - intersect_part - B
        line_connected_parts = []
        # find intersection part contains this line
        for i in intersect_parts_index:
            intersect_part = comp_parts[i]
            if intersect_part[line[0][1]][line[0][0]] == 0.0 and intersect_part[line[1][1]][line[1][0]] == 0.0:
                # line in this intersect part
                line_connected_parts.append(i)
        # find two parts connectd by this crop line
        for i in range(len(comp_parts)):

            # part should not be the intersect part
            if i in intersect_parts_index:
                continue

            # check only end point of line in part.
            part = comp_parts[i]
            if part[line[0][1]][line[0][0]] == 0.0 and part[line[1][1]][line[1][0]] != 0.0 or \
                    part[line[0][1]][line[0][0]] != 0.0 and part[line[1][1]][line[1][0]] == 0.0:
                line_connected_parts.append(i)

        # add line connected parts to relation list.
        if line_connected_parts not in line_parts_relation:
            line_parts_relation.append(line_connected_parts)

    # add independent parts to relation of line and parts
    for i in range(len(comp_parts)):
        line_connected_parts = []
        is_independent = True
        for relation in line_parts_relation:
            if i in relation:
                is_independent = False
        # check this part is independent or not
        if is_independent:
            line_connected_parts.append(i)

        if line_connected_parts != []:
            line_parts_relation.append(line_connected_parts)

    # 20. Merge parts based on the line parts relation
    for i in range(len(line_parts_relation)):
        # blank image
        blank_ = createBlankGrayscaleImage(component)
        # parts relation list
        relation = line_parts_relation[i]

        for rel in relation:
            part = comp_parts[rel]
            if part is None:
                continue
            # merge part and blank image
            for y in range(part.shape[0]):
                for x in range(part.shape[1]):
                    if part[y][x] == 0.0:
                        blank_[y][x] = 0.0

        # add to strokes list
        strokes.append(blank_)
    return strokes
Ejemplo n.º 6
0
def main():

    # 0107亻  1133壬  0554十 0427凹
    path = "0554十.jpg"

    # open image
    img = cv2.imread(path, 0)
    _, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    img_rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

    # contour without break points
    contour = getContourOfImage(img.copy())
    contour = removeBreakPointsOfContour(contour)
    contour_rgb = cv2.cvtColor(contour, cv2.COLOR_GRAY2RGB)

    contours = splitConnectedComponents(contour)
    print("contours num: %d" % len(contours))

    contours_sorted = []
    for cont in contours:
        points = sortPointsOnContourOfImage(cont)
        print("points num: %d" % len(points))
        contours_sorted.append(points)

    contour_points = []
    for y in range(contour.shape[0]):
        for x in range(contour.shape[1]):
            if contour[y][x] == 0.0:
                # black points
                contour_points.append((x, y))
    print("contour points num:%d" % len(contour_points))

    # skeleton without extra branches
    skeleton = getSkeletonOfImage(img.copy())
    # remove extra branches
    end_points = getEndPointsOfSkeletonLine(skeleton)
    cross_points = getCrossPointsOfSkeletonLine(skeleton)
    print("originale end: %d and cross: %d" %
          (len(end_points), len(cross_points)))
    skeleton_nobranches = removeBranchOfSkeletonLine(skeleton.copy(),
                                                     end_points, cross_points)
    skeleton = skeleton_nobranches
    # new end points and cross points
    end_points = getEndPointsOfSkeletonLine(skeleton)
    cross_points = getCrossPointsOfSkeletonLine(skeleton)
    cross_points_bk = cross_points.copy()

    # merge the close points
    cross_points_merged = []
    cross_distance_threshold = 10
    used_index = []
    for i in range(len(cross_points)):
        if i in used_index:
            continue
        pt1 = cross_points[i]
        midd_pt = None
        used_index.append(i)
        for j in range(len(cross_points)):
            if i == j or j in used_index:
                continue
            pt2 = cross_points[j]

            dist = math.sqrt((pt2[0] - pt1[0])**2 + (pt2[1] - pt1[1])**2)
            if dist < cross_distance_threshold:
                used_index.append(j)
                offset = (pt1[0] - pt2[0], pt1[1] - pt2[1])
                print(offset)
                midd_pt = (pt2[0] + int(offset[0] / 2.),
                           pt2[1] + int(offset[1] / 2.0))
                if skeleton[midd_pt[1]][midd_pt[0]] == 0.0:
                    cross_points_merged.append(midd_pt)
                else:
                    min_distance = 100000000
                    current_pt = None
                    for y in range(skeleton.shape[0]):
                        for x in range(skeleton.shape[1]):
                            if skeleton[y][x] == 0:
                                dist = math.sqrt((midd_pt[0] - x)**2 +
                                                 (midd_pt[1] - y)**2)
                                if dist < min_distance:
                                    min_distance = dist
                                    current_pt = (x, y)
                    if current_pt:
                        cross_points_merged.append(current_pt)

    print("After merge cross points num: %d" % len(cross_points_merged))
    cross_points = cross_points_merged

    print("After end: %d and cross: %d" % (len(end_points), len(cross_points)))
    skeleton_rgb = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2RGB)
    # display all end points
    for pt in end_points:
        skeleton_rgb[pt[1]][pt[0]] = (0, 0, 255)
    for pt in cross_points:
        skeleton_rgb[pt[1]][pt[0]] = (0, 255, 0)
    for pt in cross_points_bk:
        skeleton_rgb[pt[1]][pt[0]] = (0, 0, 255)

    # all corner points on contour
    img = np.float32(img.copy())
    dst = cv2.cornerHarris(img, 3, 3, 0.03)
    dst = cv2.dilate(dst, None)

    corners_area_points = []
    for y in range(dst.shape[0]):
        for x in range(dst.shape[1]):
            if dst[y][x] > 0.1 * dst.max():
                corners_area_points.append((x, y))
    # show the corner points
    for pt in corners_area_points:
        if img[pt[1]][pt[0]] == 0:
            img_rgb[pt[1]][pt[0]] = (0, 255, 0)
        else:
            img_rgb[pt[1]][pt[0]] = (0, 0, 255)
    # all corner area points on the contour
    corners_lines_points = []
    for pt in corners_area_points:
        if pt in contour_points:
            corners_lines_points.append(pt)

    for pt in corners_lines_points:
        contour_rgb[pt[1]][pt[0]] = (0, 255, 0)

    # merge points of corner points
    corners_merged_points = []
    for contour_sorted in contours_sorted:
        i = 0
        while True:
            midd_index = -1
            pt = contour_sorted[i]
            if pt in corners_lines_points:
                # red point
                start = i
                end = start
                while True:
                    end += 1
                    if end >= len(contour_sorted):
                        break
                    # next point
                    next_pt = contour_sorted[end]
                    if next_pt in corners_lines_points:
                        # red point
                        continue
                    else:
                        # black point
                        break
                end -= 1
                midd_index = start + int((end - start) / 2.0)
                i = end
            i += 1
            if i >= len(contour_sorted):
                break
            if midd_index != -1:
                corners_merged_points.append(contour_sorted[midd_index])
    print("After merged, corner points num: %d" % len(corners_merged_points))
    for pt in corners_merged_points:
        contour_rgb[pt[1]][pt[0]] = (0, 0, 255)

    # remove the no-corner points
    corners_points = []
    threshold_distance = 30
    for pt in corners_merged_points:
        dist_cross = min_distance_point2pointlist(pt, cross_points)
        dist_end = min_distance_point2pointlist(pt, end_points)
        if dist_cross < threshold_distance and dist_end > threshold_distance / 3.:
            corners_points.append(pt)
    print("corner pints num: %d" % len(corners_points))
    for pt in corners_points:
        contour_rgb[pt[1]][pt[0]] = (255, 0, 0)

    # segment contour to sub-contours based on the corner points
    def segmentContourBasedOnCornerPoints(contour_sorted, corner_points):
        """
        Segment contour to sub-contours based on the corner points
        :param contour_sorted:
        :param corner_points:
        :return:
        """
        if contour_sorted is None or corner_points is None:
            return
        # sub conotour index
        sub_contour_index = []
        for pt in corner_points:
            index = contour_sorted.index(pt)
            sub_contour_index.append(index)
        print("sub contour index num: %d" % len(sub_contour_index))
        sub_contours = []
        for i in range(len(sub_contour_index)):
            if i == len(sub_contour_index) - 1:
                sub_contour = contour_sorted[sub_contour_index[i]:len(
                    contour_sorted)] + contour_sorted[0:sub_contour_index[0] +
                                                      1]
            else:
                sub_contour = contour_sorted[
                    sub_contour_index[i]:sub_contour_index[i + 1] + 1]
            sub_contours.append(sub_contour)
        print("sub contours num: %d" % len(sub_contours))

        return sub_contours

    # segment contour to sub-contours
    for contour in contours:
        cont_sorted = sortPointsOnContourOfImage(contour)
        sub_contours = segmentContourBasedOnCornerPoints(
            cont_sorted, corners_points)

    # cluster corner points
    corner_points_cluster = []
    used_index = []
    colinear_couple = []
    for i in range(len(corners_points)):
        if i in used_index:
            continue
        for j in range(len(corners_points)):
            if i == j or j in used_index:
                continue
            min_offset = min(abs(corners_points[i][0] - corners_points[j][0]),
                             abs(corners_points[i][1] - corners_points[j][1]))
            if min_offset < 20:
                couple = [corners_points[i], corners_points[j]]
                colinear_couple.append(couple)
                used_index.append(j)
    print("co linear num: %d" % len(colinear_couple))

    print("sub contours num: %d" % len(sub_contours))

    stroke1_img = np.ones_like(contour) * 255
    stroke1_img = np.array(stroke1_img, dtype=np.uint8)
    stroke1_img_rgb = cv2.cvtColor(stroke1_img, cv2.COLOR_GRAY2RGB)

    for pt in sub_contours[0]:
        stroke1_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke1_img[pt[1]][pt[0]] = 0
    for pt in sub_contours[2]:
        stroke1_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke1_img[pt[1]][pt[0]] = 0

    cv2.line(stroke1_img_rgb, sub_contours[0][0], sub_contours[2][-1],
             (0, 0, 255), 1)
    cv2.line(stroke1_img_rgb, sub_contours[0][-1], sub_contours[2][0],
             (0, 0, 255), 1)
    cv2.line(stroke1_img, sub_contours[0][0], sub_contours[2][-1], 0, 1)
    cv2.line(stroke1_img, sub_contours[0][-1], sub_contours[2][0], 0, 1)

    stroke2_img = np.ones_like(contour) * 255
    stroke2_img = np.array(stroke2_img, dtype=np.uint8)
    stroke2_img_rgb = cv2.cvtColor(stroke2_img, cv2.COLOR_GRAY2RGB)

    for pt in sub_contours[1]:
        stroke2_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke2_img[pt[1]][pt[0]] = 0
    for pt in sub_contours[3]:
        stroke2_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke2_img[pt[1]][pt[0]] = 0

    cv2.line(stroke2_img_rgb, sub_contours[1][0], sub_contours[3][-1],
             (0, 0, 255), 1)
    cv2.line(stroke2_img_rgb, sub_contours[1][-1], sub_contours[3][0],
             (0, 0, 255), 1)
    cv2.line(stroke2_img, sub_contours[1][0], sub_contours[3][-1], 0, 1)
    cv2.line(stroke2_img, sub_contours[1][-1], sub_contours[3][0], 0, 1)

    storke1_points = sortPointsOnContourOfImage(stroke1_img)
    stroke2_points = sortPointsOnContourOfImage(stroke2_img)

    stroke1_img = np.ones_like(stroke1_img) * 255
    stroke1_img = np.array(stroke1_img, dtype=np.uint8)

    storke1_points = np.array([storke1_points], "int32")
    cv2.fillPoly(stroke1_img, storke1_points, 0)

    stroke2_img = np.ones_like(stroke2_img) * 255
    stroke2_img = np.array(stroke2_img, dtype=np.uint8)

    storke2_points = np.array([stroke2_points], "int32")
    cv2.fillPoly(stroke2_img, storke2_points, 0)

    # find corresponding sub-contours based on the co-linear couple
    # for sub in sub_contours:
    #     pt1 = sub[0]
    #     pt2 = sub[-1]
    #
    #     couples = []
    #     for coup in colinear_couple:
    #         if pt1 in coup or pt2 in coup:
    #             # if 4 points, 2 points should be in same sub-contour
    #             if pt1 in coup and pt2 in coup:
    #                 continue
    #             couples.append(coup)
    #     print("sub couples num: %d" % len(couples))

    # cv2.imshow("img rgb", img_rgb)
    # cv2.imshow("skeleton", skeleton)
    # cv2.imshow("skeleton no branches", skeleton_nobranches )
    cv2.imshow("skeleton rgb", skeleton_rgb)
    cv2.imshow("contour rgb", contour_rgb)
    cv2.imshow("stroke 1", stroke1_img)
    cv2.imshow("stroke 2", stroke2_img)
    cv2.imshow("stroke1rgb", stroke1_img_rgb)
    cv2.imshow("stroke2rgb", stroke2_img_rgb)

    # for i in range(len(contours)):
    #     cv2.imshow("contour %d" % i, contours[i])

    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 7
0
def main():
    # Point
    Point = namedtuple("Point", ["x", "y"])

    # target image
    target_path = "../templates/ben.png"
    target_img = cv2.imread(target_path, 0)
    _, target_img = cv2.threshold(target_img, 127, 255, cv2.THRESH_BINARY)
    print(target_img.shape)

    target_img_rgb = cv2.cvtColor(target_img, cv2.COLOR_GRAY2RGB)

    # connected components with labeling algorithm
    partial_parts = splitConnectedComponents(target_img)
    print("number of parts: %d" % len(partial_parts))
    # part 1
    part_1 = partial_parts[0]

    # skeleton line
    part_1_ = part_1 != 255

    part_skel = skeletonize(part_1_)
    part_skel = (1 - part_skel) * 255

    part_skel = np.array(part_skel, dtype=np.uint8)

    for y in range(part_skel.shape[0]):
        for x in range(part_skel.shape[1]):
            if part_skel[y][x] == 0.0:
                target_img_rgb[y][x] = (0, 255, 0)

    # remove extra branch
    end_points = getEndPointsOfSkeletonLine(part_skel)
    cross_points = getCrossPointsOfSkeletonLine(part_skel)

    part_skel = removeBranchOfSkeletonLine(
        part_skel,
        end_points,
        cross_points,
    )

    part_1_rgb_no_branch = cv2.cvtColor(part_1, cv2.COLOR_GRAY2RGB)

    for y in range(part_skel.shape[0]):
        for x in range(part_skel.shape[1]):
            if part_skel[y][x] == 0.0:
                part_1_rgb_no_branch[y][x] = (0, 255, 0)

    # new end points and cross points without extra branches
    end_points = getEndPointsOfSkeletonLine(part_skel)
    print("number of end points: %d" % len(end_points))
    cross_points = getCrossPointsOfSkeletonLine(part_skel)
    print("number of cross points: %d" % len(cross_points))

    # add end points to image with blue color
    for (x, y) in end_points:
        part_1_rgb_no_branch[y][x] = (255, 0, 0)

    # add cross points to image with red color
    for (x, y) in cross_points:
        part_1_rgb_no_branch[y][x] = (0, 0, 255)

    # Contour  of character
    part_1_edges = cv2.Canny(part_1, 100, 200)
    part_1_edges = 255 - part_1_edges

    # Order the points on contours of character
    print(part_1_edges.shape)
    begin_point = None

    # find the begin point
    for y in range(part_1_edges.shape[0]):
        for x in range(part_1_edges.shape[1]):
            if part_1_edges[y][x] == 0.0:
                # first black point
                begin_point = (x, y)
                break
        if begin_point:
            break
    print("begin point: (%d, %d)" % (begin_point[0], begin_point[1]))

    edge_order_lables = np.zeros_like(part_1_edges)
    edge_order_lables[begin_point[1]][begin_point[0]] = 1.

    curr_point = begin_point

    # find the second point
    if part_1_edges[y][x + 1] == 0.0:
        print("Second point is 4 position")
        curr_point = (x + 1, y)
    elif part_1_edges[y + 1][x + 1] == 0.0:
        print("Second point is 5 position")
        curr_point = (x + 1, y + 1)
    print(curr_point)
    edge_order_lables[curr_point[1]][curr_point[0]] = 1.

    edge_points = []
    edge_points.append(begin_point)
    edge_points.append(curr_point)

    next_point = curr_point
    edge_id = 0
    while True:

        x = curr_point[0]
        y = curr_point[1]
        # 2,4,6,8 position firstly and then 3,5,7,9 position
        # point in 2 position
        if part_1_edges[y - 1][x] == 0.0 and edge_order_lables[y -
                                                               1][x] == 0.0:
            print("%d po" % 2)
            next_point = (x, y - 1)
            edge_order_lables[y - 1][x] = 1.

        # point in 4 position
        elif part_1_edges[y][x + 1] == 0.0 and edge_order_lables[y][x +
                                                                    1] == 0.0:
            print("%d po" % 4)
            next_point = (x + 1, y)
            edge_order_lables[y][x + 1] = 1.

        # point in 6 position
        elif part_1_edges[y + 1][x] == 0.0 and edge_order_lables[y +
                                                                 1][x] == 0.0:
            print("%d po" % 6)
            next_point = (x, y + 1)
            edge_order_lables[y + 1][x] = 1.

        # point in 8 position
        elif part_1_edges[y][x - 1] == 0.0 and edge_order_lables[y][x -
                                                                    1] == 0.0:
            print("%d po" % 8)
            next_point = (x - 1, y)
            edge_order_lables[y][x - 1] = 1.

        # point in 3 position
        elif part_1_edges[y - 1][x + 1] == 0.0 and edge_order_lables[y - 1][
                x + 1] == 0.0:
            print("%d po" % 3)
            next_point = (x + 1, y - 1)
            edge_order_lables[y - 1][x + 1] = 1.

        # point in 5 position
        elif part_1_edges[y + 1][x + 1] == 0.0 and edge_order_lables[y + 1][
                x + 1] == 0.0:
            print("%d po" % 5)
            next_point = (x + 1, y + 1)
            edge_order_lables[y + 1][x + 1] = 1.

        # point in 7 position
        elif part_1_edges[y + 1][x - 1] == 0.0 and edge_order_lables[y + 1][
                x - 1] == 0.0:
            print("%d po" % 7)
            next_point = (x - 1, y + 1)
            edge_order_lables[y + 1][x - 1] = 1.

        # point in 9 position
        elif part_1_edges[y - 1][x - 1] == 0.0 and edge_order_lables[y - 1][
                x - 1] == 0.0:
            print("%d po" % 9)
            next_point = (x - 1, y - 1)
            edge_order_lables[y - 1][x - 1] = 1.

        if next_point == curr_point:
            print(next_point)
            print(curr_point)
            edge_points.append(curr_point)
            break
        else:
            edge_points.append(curr_point)
            edge_id += 1
            print("edge id: %d" % edge_id)
            curr_point = next_point

    print("edge points len: %d" % len(edge_points))
    for pt in edge_points:
        print(pt)
        part_1_rgb_no_branch[pt[1]][pt[0]] = (0, 0, 255)

    # # houngh lines
    # rho_resolution = 1
    # theta_resolution = np.pi / 180
    # threshold = 155
    # hough_lines = cv2.HoughLines(part_1_edges, rho_resolution, theta_resolution, threshold)
    #
    # print("number of hough lines: %d " % len(hough_lines))
    #
    # hough_lines_img = np.zeros_like(part_1_edges)
    # draw_lines(hough_lines_img, hough_lines)
    # original_image_with_hough_lines = weighted_img(hough_lines_img, part_1_edges)
    #
    # cv2.imshow("hough line image", hough_lines_img)
    # cv2.imshow("original hough", original_image_with_hough_lines)

    # # Corner detection
    # corners = cv2.goodFeaturesToTrack(part_1_edges, 100, 0.01, 10)
    # corners = np.int0(corners)
    #
    # for i in corners:
    #     x, y = i.ravel()
    #     cv2.circle(part_1_rgb_no_branch, (x, y), 3, 255, -1)

    cv2.imshow("img", target_img)
    # cv2.imshow("skel", part_skel)
    # cv2.imshow("img_rgb", target_img_rgb)
    cv2.imshow("img_rgb_no_branch", part_1_rgb_no_branch)
    cv2.imshow("edges", part_1_edges)

    cv2.imwrite("../templates/ben_skeleton.png", target_img_rgb)
    cv2.imwrite("../templates/ben_skeleton_no_branch.png",
                part_1_rgb_no_branch)

    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 8
0
def main():
    # src_path = "../strokes/src_strokes4.png"
    src_path = "../chars/src_dan_svg_simple_resized.png"
    tag_path = "../strokes/tag_strokes4.png"

    src_img = cv2.imread(src_path, 0)
    tag_img = cv2.imread(tag_path, 0)

    ret, src_img = cv2.threshold(src_img, 127, 255, cv2.THRESH_BINARY)
    ret, tag_img = cv2.threshold(tag_img, 127, 255, cv2.THRESH_BINARY)

    # resize
    src_img, tag_img = resizeImages(src_img, tag_img)

    ret, src_img = cv2.threshold(src_img, 127, 255, cv2.THRESH_BINARY)
    ret, tag_img = cv2.threshold(tag_img, 127, 255, cv2.THRESH_BINARY)

    # obtain the skeleton of strokes
    src_img_ = src_img != 255
    tag_img_ = tag_img != 255

    src_skel = skeletonize(src_img_)
    tag_skel = skeletonize(tag_img_)

    src_skel = (1 - src_skel) * 255
    tag_skel = (1 - tag_skel) * 255

    src_skel = np.array(src_skel, dtype=np.uint8)
    tag_skel = np.array(tag_skel, dtype=np.uint8)

    src_skel_rgb = cv2.cvtColor(src_skel, cv2.COLOR_GRAY2BGR)
    tag_skel_rgb = cv2.cvtColor(tag_skel, cv2.COLOR_GRAY2BGR)

    src_end_points = getEndPointsOfSkeletonLine(src_skel)
    tag_end_points = getEndPointsOfSkeletonLine(tag_skel)

    for (x, y) in src_end_points:
        src_skel_rgb[y][x] = (0, 0, 255)
    for (x, y) in tag_end_points:
        tag_skel_rgb[y][x] = (0, 0, 255)

    print("src end points len: %d" % len(src_end_points))
    print("tag end points len: %d" % len(tag_end_points))

    if len(src_end_points) > 2:
        print("src skeleton line has branch")
    if len(tag_end_points) > 2:
        print("tag skeleton line has branch")
    src_cross_points = getCrossPointsOfSkeletonLine(src_skel)
    tag_cross_points = getCrossPointsOfSkeletonLine(tag_skel)

    for (x, y) in src_cross_points:
        src_skel_rgb[y][x] = (255, 0, 0)
    for (x, y) in tag_cross_points:
        tag_skel_rgb[y][x] = (255, 0, 0)

    print("src cross len: %d" % len(src_cross_points))
    print("tag cross len: %d" % len(tag_cross_points))

    if len(src_cross_points) > 0:
        # exist branches
        src_skel = removeBranchOfSkeletonLine(src_skel, src_end_points, src_cross_points, )

    if len(tag_cross_points) > 0:
        # exist branches
        tag_skel = removeBranchOfSkeletonLine(tag_skel, tag_end_points, tag_cross_points, )

    # src_skel_no_branch = removeBranchOfSkeletonLine(src_skel, src_end_points, src_cross_points)
    # tag_skel_no_btranch = removeBranchOfSkeletonLine(tag_skel, tag_end_points, tag_cross_points)

    cv2.imshow("coverage img", src_img)
    cv2.imshow("new coverage img", tag_img)

    cv2.imshow("src rgb", src_skel_rgb)
    cv2.imshow("tag rgb", tag_skel_rgb)

    cv2.imshow("src skeleton img", src_skel)
    cv2.imshow("tag skeleton img", tag_skel)

    # cv2.imshow("src skeleton img no branch", src_skel_no_branch)
    # cv2.imshow("tag skeleton img no branch", tag_skel_no_branch)

    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 9
0
components = getConnectedComponents(img, connectivity=8)
print("components num: %d" % len(components))

# 6. Get skeletons of component.
comp_skeleton = getSkeletonOfImage(components[2])
comp_skeleton = getSkeletonOfImage(comp_skeleton)
cv2.imshow("skeleton_original", comp_skeleton)

# 7. Process the skeleton by remove extra branches.
# comp_skeleton = removeShortBranchesOfSkeleton(comp_skeleton, length_threshold=30)
comp_skeleton_rgb = cv2.cvtColor(comp_skeleton, cv2.COLOR_GRAY2RGB)
cv2.imshow("skeleton_smoothed", comp_skeleton)

# 8. Get the end points and cross points after skeleton processed
end_points = getEndPointsOfSkeletonLine(comp_skeleton)
cross_points = getCrossPointsOfSkeletonLine(comp_skeleton)
print("end points num: %d ,and cross points num: %d" %
      (len(end_points), len(cross_points)))

# 9. Get contour image of component
comp_contours_img = getContourImage(components[2])
comp_contours_img_rbg = cv2.cvtColor(comp_contours_img, cv2.COLOR_GRAY2RGB)

# 10. Detect the number of contours and return all contours
comp_contours = getConnectedComponents(comp_contours_img, connectivity=8)
print("contours num: %d" % len(comp_contours))

# 11. Get points on contours
corners_points = []
for cont in comp_contours: