Ejemplo n.º 1
0
    def contourBtn(self):
        """
        Obtain the contour of image
        :return:
        """
        print("Contour button clicked")
        contour_ = getContourOfImage(self.image_gray)

        # remove the break points
        contour_ = removeBreakPointsOfContour(contour_)

        self.contour_gray = contour_.copy()
        qimg = QImage(contour_.data, contour_.shape[1], contour_.shape[0],
                      contour_.shape[1], QImage.Format_Indexed8)

        self.contour_pix = QPixmap.fromImage(qimg)
        self.temp_contour_pix = self.contour_pix.copy()
        self.scene.addPixmap(self.contour_pix)
        self.scene.update()
        self.statusbar.showMessage("Contour successed!")
        del contour_, qimg
Ejemplo n.º 2
0
def autoSmoothContoursOfComponent(component, blockSize=3, ksize=3, k=0.04):
    """

    :param component:
    :return:
    """
    if component is None:
        return
    # 5. Using corner detection to get corner regions
    corner_component = np.float32(component)
    dst = cv2.cornerHarris(corner_component,
                           blockSize=blockSize,
                           ksize=ksize,
                           k=k)
    dst = cv2.dilate(dst, None)

    corners_area_points = []
    for y in range(dst.shape[0]):
        for x in range(dst.shape[1]):
            if dst[y][x] > 0.1 * dst.max():
                corners_area_points.append((x, y))
    print("corner area points num: %d" % len(corners_area_points))

    # 6. Determine center points of corner areas
    blank_gray = createBlankGrayscaleImage(component)
    for pt in corners_area_points:
        blank_gray[pt[1]][pt[0]] = 0.0

    rectangles = getAllMiniBoundingBoxesOfImage(blank_gray)

    corners_area_center_points = []
    for rect in rectangles:
        corners_area_center_points.append(
            (rect[0] + int(rect[2] / 2.), rect[1] + int(rect[3] / 2.)))
    print("corner area center points num: %d" %
          len(corners_area_center_points))

    # based the distance to end points and cross points, remove extra corners area center points

    component_skeleton = getSkeletonOfImage(component)
    end_points = getEndPointsOfSkeletonLine(component_skeleton)
    cross_points = getCrossPointsOfSkeletonLine(component_skeleton)

    # remove extra branches
    # img_skeleton = removeBranchOfSkeletonLine(img_skeleton, end_points, cross_points)
    # end_points = getEndPointsOfSkeletonLine(img_skeleton)
    # cross_points = getEndPointsOfSkeletonLine(img_skeleton)

    # detect valid corner region center points closed to end points and cross points
    valid_corners_area_center_points = []
    dist_threshold = 40
    for pt in corners_area_center_points:
        is_valid = False
        for ept in end_points:
            dist = math.sqrt((pt[0] - ept[0])**2 + (pt[1] + ept[1])**2)
            if dist <= dist_threshold:
                is_valid = True
                break
        if is_valid:
            valid_corners_area_center_points.append(pt)
            continue
        for cpt in cross_points:
            dist = math.sqrt((pt[0] - cpt[0])**2 + (pt[1] - cpt[1])**2)
            if dist <= dist_threshold:
                is_valid = True
                break
        if is_valid:
            valid_corners_area_center_points.append(pt)

    print("valid corner area center points num: %d" %
          len(valid_corners_area_center_points))

    del blank_gray

    # 7. Get all contours of component
    component_contours = getContourOfImage(component)
    contours = getConnectedComponents(component_contours, connectivity=8)
    print("contours num: %d" % len(contours))

    # 8. Process contours to get closed and 1-pixel width contours
    contours_processed = []
    for cont in contours:
        cont = removeBreakPointsOfContour(cont)
        contours_processed.append(cont)
    print("contours processed num: %d" % len(contours_processed))

    # 9. Find corner points of conthours closed to corner region center points. For each contour, there is a coner points list.
    contours_corner_points = []
    for i in range(len(contours_processed)):
        corner_points = []
        contour = contours_processed[i]

        for pt in valid_corners_area_center_points:
            x0 = target_x = pt[0]
            y0 = target_y = pt[1]
            min_dist = 10000
            # search target point in region: 20 * 20 of center is (x0, y0)
            for y in range(y0 - 10, y0 + 10):
                for x in range(x0 - 10, x0 + 10):
                    if contour[y][x] == 255:
                        continue
                    dist = math.sqrt((x - x0)**2 + (y - y0)**2)
                    if dist < min_dist:
                        min_dist = dist
                        target_x = x
                        target_y = y
            if min_dist < 5:
                corner_points.append((target_x, target_y))

        contours_corner_points.append(corner_points)
    total_num = 0
    for cont in contours_corner_points:
        total_num += len(cont)
    if total_num == len(valid_corners_area_center_points):
        print("corner points not ignored")
    else:
        print("corner points be ignored")

    # 10. Separate contours into sub-contours based on the corner points on different contours
    sub_contours = []
    for i in range(len(contours_processed)):
        contour = contours_processed[i]
        corner_points = contours_corner_points[i]
        # sorted the contour
        contour_points_sorted = sortPointsOnContourOfImage(contour)
        # sorted the corner points
        corner_points_sorted = []
        for pt in contour_points_sorted:
            if pt in corner_points:
                corner_points_sorted.append(pt)
        # sepate the contour into sub-contour
        for j in range(len(corner_points_sorted)):
            start_pt = corner_points_sorted[j]
            end_pt = None
            if j == len(corner_points_sorted) - 1:
                end_pt = corner_points_sorted[0]
            else:
                end_pt = corner_points_sorted[j + 1]
            # find indexes of start point and end point in contour_points_sorted
            start_index = contour_points_sorted.index(start_pt)
            end_index = contour_points_sorted.index(end_pt)

            # separate
            sub_contour = None
            if start_index <= end_index:
                if end_index == len(contour_points_sorted) - 1:
                    sub_contour = contour_points_sorted[
                        start_index:len(contour_points_sorted)]
                    sub_contour.append(contour_points_sorted[0])
                else:
                    sub_contour = contour_points_sorted[start_index:end_index +
                                                        1]
            else:
                sub_contour = contour_points_sorted[
                    start_index:len(contour_points_sorted
                                    )] + contour_points_sorted[0:end_index + 1]

            sub_contours.append(sub_contour)
    print("sub contours num: %d" % len(sub_contours))

    # 11. Beizer curve fit all sub-contours under maximal error
    max_error = 100
    sub_contours_smoothed = []

    for id in range(len(sub_contours)):
        # single sub-contour
        sub_contour = np.array(sub_contours[id])

        if len(sub_contour) < 2:
            continue
        beziers = fitCurve(sub_contour, maxError=max_error)
        sub_contour_smoothed = []

        for bez in beziers:
            bezier_points = draw_cubic_bezier(bez[0], bez[1], bez[2], bez[3])
            sub_contour_smoothed += bezier_points

        sub_contours_smoothed.append(sub_contour_smoothed)

    # 12. Merge sub-contours together
    img_smoothed_gray = createBlankGrayscaleImage(component)

    # merge all smoothed sub-contours
    for sub in sub_contours_smoothed:
        for pt in sub:
            img_smoothed_gray[pt[1]][pt[0]] = 0.0
    # process smoothed contours to get closed and 1-pixel width
    img_smoothed_gray = getSkeletonOfImage(img_smoothed_gray)

    # remove single points that 8

    cv2.imshow("img_smoothed_gray", img_smoothed_gray)

    contours_smoothed = getConnectedComponents(img_smoothed_gray)

    if len(contours_smoothed) == 1:
        # no hole exist, directly fill black in the contour
        cont = contours_smoothed[0]
        cont_points = sortPointsOnContourOfImage(cont)
        cont_points = np.array([cont_points], "int32")

        fill_contour_smooth = np.ones_like(component) * 255
        fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
        fill_contour_smooth = cv2.fillPoly(fill_contour_smooth, cont_points, 0)

        return fill_contour_smooth
    else:
        # exist hole, should processed
        print("there are holes!")
        fill_img_list = []
        hole_points = []
        for cont in contours_smoothed:
            cont_points = sortPointsOnContourOfImage(cont)
            cont_points = np.array([cont_points], "int32")

            fill_contour_smooth = np.ones_like(component) * 255
            fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
            fill_contour_smooth = cv2.fillPoly(fill_contour_smooth,
                                               cont_points, 0)

            valid_num = same_num = 0
            for y in range(component.shape[0]):
                for x in range(component.shape[1]):
                    if component[y][x] == 0.0:
                        valid_num += 1
                        if fill_contour_smooth[y][x] == 0.0:
                            same_num += 1

            if 1.0 * same_num / valid_num > 0.8:
                fill_img_list.append(fill_contour_smooth)
                print("ratio: %f" % (1.0 * same_num / valid_num))
            else:
                print("ratio: %f" % (1.0 * same_num / valid_num))
                for y in range(fill_contour_smooth.shape[0]):
                    for x in range(fill_contour_smooth.shape[1]):
                        if fill_contour_smooth[y][x] == 0.0:
                            hole_points.append((x, y))

        # merge filled images
        blank_temp = np.ones_like(component) * 255
        for fl in fill_img_list:
            for y in range(fl.shape[0]):
                for x in range(fl.shape[1]):
                    if fl[y][x] == 0.0:
                        blank_temp[y][x] = fl[y][x]
        # hole points
        for pt in hole_points:
            blank_temp[pt[1]][pt[0]] = 255

        return blank_temp
Ejemplo n.º 3
0
        valid_corners_area_center_points.append(pt)

print("valid corner area center points num: %d" %
      len(valid_corners_area_center_points))

del blank_gray

# 7. Get all contours of component
component_contours = getContourOfImage(component)
contours = getConnectedComponents(component_contours, connectivity=8)
print("contours num: %d" % len(contours))

# 8. Process contours to get closed and 1-pixel width contours
contours_processed = []
for cont in contours:
    cont = removeBreakPointsOfContour(cont)
    contours_processed.append(cont)
print("contours processed num: %d" % len(contours_processed))

# 9. Find corner points of conthours closed to corner region center points. For each contour, there is a coner points list.
contours_corner_points = []
for i in range(len(contours_processed)):
    corner_points = []
    contour = contours_processed[i]

    for pt in valid_corners_area_center_points:
        x0 = target_x = pt[0]
        y0 = target_y = pt[1]
        min_dist = 10000
        # search target point in region: 20 * 20 of center is (x0, y0)
        for y in range(y0 - 10, y0 + 10):
Ejemplo n.º 4
0
def autoStrokeExtractFromComponent(component):
    """
    Automatically strokes extract from the component.
    :param component:
    :return:
    """
    strokes = []
    if component is None:
        return strokes

    # 6. Get skeletons of component.
    comp_skeleton = getSkeletonOfImage(component.copy())
    # cv2.imshow("skeleton_original", comp_skeleton)

    # 7. Process the skeleton by remove extra branches.
    comp_skeleton = removeShortBranchesOfSkeleton(comp_skeleton, length_threshold=30)
    # cv2.imshow("skeleton_smoothed", comp_skeleton)

    # 8. Get the end points and cross points after skeleton processed
    end_points = getEndPointsOfSkeletonLine(comp_skeleton)
    cross_points = getCrossPointsOfSkeletonLine(comp_skeleton)
    print("end points num: %d ,and cross points num: %d" % (len(end_points), len(cross_points)))

    # 9. Get contour image of component
    comp_contours_img = getContourImage(component.copy())

    # 10. Detect the number of contours and return all contours
    comp_contours = getConnectedComponents(comp_contours_img, connectivity=8)
    print("contours num: %d" % len(comp_contours))

    # 11. Get points on contours
    corners_points = []
    for cont in comp_contours:
        cont = removeBreakPointsOfContour(cont)
        cont_sorted = sortPointsOnContourOfImage(cont)
        cont_points = rdp(cont_sorted, 5)
        corners_points += cont_points
    print("corner points num:", len(corners_points))

    CORNER_CROSS_DIST_THRESHOLD = 30
    corners_points_merged = []
    for pt in corners_points:
        for cpt in cross_points:
            dist = math.sqrt((pt[0] - cpt[0]) ** 2 + (pt[1] - cpt[1]) ** 2)
            if dist < CORNER_CROSS_DIST_THRESHOLD:
                corners_points_merged.append(pt)
                break
    corners_points = corners_points_merged
    print("merged corner points num:", len(corners_points))

    # # 11. Detect the corner regions of component
    # #       Harris corner detector
    # corner_region_img = np.float32(component.copy())
    # dst = cv2.cornerHarris(corner_region_img, blockSize=3, ksize=3, k=0.04)
    # dst = cv2.dilate(dst, None)
    #
    # # get all points in corners area
    # corners_area_points = []
    # for y in range(dst.shape[0]):
    #     for x in range(dst.shape[1]):
    #         if dst[y][x] > 0.1 * dst.max():
    #             corners_area_points.append((x, y))
    #
    # # get all center points of corner area
    # corners_img = createBlankGrayscaleImage(component)
    # for pt in corners_area_points:
    #     corners_img[pt[1]][pt[0]] = 0.0
    #
    # rectangles = getAllMiniBoundingBoxesOfImage(corners_img)
    #
    # corners_area_center_points = []
    # for rect in rectangles:
    #     corners_area_center_points.append((rect[0] + int(rect[2] / 2.), rect[1] + int(rect[3] / 2.)))
    #
    # # get all corner points in coutour image.
    # corners_points = []
    # for pt in corners_area_center_points:
    #     if comp_contours_img[pt[1]][pt[0]] == 0.0:
    #         corners_points.append(pt)
    #     else:
    #         min_dist = 100000
    #         min_x = min_y = 0
    #         for y in range(comp_contours_img.shape[0]):
    #             for x in range(comp_contours_img.shape[1]):
    #                 cpt = comp_contours_img[y][x]
    #                 if cpt == 0.0:
    #                     dist = math.sqrt((x - pt[0]) ** 2 + (y - pt[1]) ** 2)
    #                     if dist < min_dist:
    #                         min_dist = dist
    #                         min_x = x
    #                         min_y = y
    #         # points on contour
    #         corners_points.append((min_x, min_y))
    print("corners points num: %d" % len(corners_points))

    # 12. Get valid corner points based on the end points and cross points
    corners_points = getValidCornersPoints(corners_points, cross_points, end_points, distance_threshold=30)
    print("corners points num: %d" % len(corners_points))

    if len(corners_points) == 0:
        print("no corner points")
        strokes.append(component)
        return strokes

    # 13. Cluster these corner points based on the distance between them and cross points
    corners_points_cluster = getClusterOfCornerPoints(corners_points, cross_points, threshold_distance=70)
    print("corner points cluster num: %d" % len(corners_points_cluster))
    print(corners_points_cluster)

    # 14. Generate cropping lines between two corner points
    crop_lines = getCropLines(corners_points_cluster, comp_contours)
    print("cropping lines num: %d" % len(crop_lines))

    # 15. Separate the components based on the cropping lines
    component_ = component.copy()

    # add white and 1-pixel width line in component to separate it.
    for line in crop_lines:
        cv2.line(component_, line[0], line[1], 255, 1)

    # 16. Get parts of component.
    comp_parts = []
    # invert color !!!
    component_ = 255 - component_
    ret, labels = cv2.connectedComponents(component_, connectivity=4)
    print(ret)
    for r in range(1, ret):
        img_ = createBlankGrayscaleImage(component_)
        for y in range(component_.shape[0]):
            for x in range(component_.shape[1]):
                if labels[y][x] == r:
                    img_[y][x] = 0.0
        if img_[0][0] != 0.0 and isValidComponent(img_, component):
            comp_parts.append(img_)
    print("parts of component num: %d" % len(comp_parts))

    # 17. Add cropping lines to corresponding parts of component
    # add lines to parts of component.
    for i in range(len(comp_parts)):
        part = comp_parts[i]

        for line in crop_lines:
            start_dist = getDistanceBetweenPointAndComponent(line[0], part)
            end_dist = getDistanceBetweenPointAndComponent(line[1], part)

            if start_dist <= 3 and end_dist <= 3:
                cv2.line(part, line[0], line[1], 0, 1)

    # 18. Find intersection parts of component
    used_index = []
    intersect_parts_index = []
    for i in range(len(comp_parts)):
        part = comp_parts[i]
        num = 0  # number of lines in part
        for line in crop_lines:
            if part[line[0][1]][line[0][0]] == 0.0 and part[line[1][1]][line[1][0]] == 0.0:
                num += 1
        if num == 4:   # 4 lines in one part, this part is the intersection part
            intersect_parts_index.append(i)
            used_index.append(i)
    print("intersection parts num: %d" % len(intersect_parts_index))

    # 19. Find the relation part and crop lines - one line -> one part or three part (part1 + intersect_part + part2)
    intersect_parts_crop_lines_index = []
    for i in range(len(crop_lines)):
        line = crop_lines[i]
        for index in intersect_parts_index:
            intersect_part = comp_parts[index]
            if intersect_part[line[0][1]][line[0][0]] == 0.0 and intersect_part[line[1][1]][line[1][0]] == 0.0:
                # this line in intersection part
                intersect_parts_crop_lines_index.append(i)
    print("crop lines in intersection part num: %d" % len(intersect_parts_crop_lines_index))

    # Cropping lines are divided into two types: in intersect part and not in this part.
    line_parts_relation = []
    for index in intersect_parts_crop_lines_index:
        line = crop_lines[index]

        # line and parts that are connected by this crop line: A - intersect_part - B
        line_connected_parts = []
        # find intersection part contains this line
        for i in intersect_parts_index:
            intersect_part = comp_parts[i]
            if intersect_part[line[0][1]][line[0][0]] == 0.0 and intersect_part[line[1][1]][line[1][0]] == 0.0:
                # line in this intersect part
                line_connected_parts.append(i)
        # find two parts connectd by this crop line
        for i in range(len(comp_parts)):

            # part should not be the intersect part
            if i in intersect_parts_index:
                continue

            # check only end point of line in part.
            part = comp_parts[i]
            if part[line[0][1]][line[0][0]] == 0.0 and part[line[1][1]][line[1][0]] != 0.0 or \
                    part[line[0][1]][line[0][0]] != 0.0 and part[line[1][1]][line[1][0]] == 0.0:
                line_connected_parts.append(i)

        # add line connected parts to relation list.
        if line_connected_parts not in line_parts_relation:
            line_parts_relation.append(line_connected_parts)

    # add independent parts to relation of line and parts
    for i in range(len(comp_parts)):
        line_connected_parts = []
        is_independent = True
        for relation in line_parts_relation:
            if i in relation:
                is_independent = False
        # check this part is independent or not
        if is_independent:
            line_connected_parts.append(i)

        if line_connected_parts != []:
            line_parts_relation.append(line_connected_parts)

    # 20. Merge parts based on the line parts relation
    for i in range(len(line_parts_relation)):
        # blank image
        blank_ = createBlankGrayscaleImage(component)
        # parts relation list
        relation = line_parts_relation[i]

        for rel in relation:
            part = comp_parts[rel]
            if part is None:
                continue
            # merge part and blank image
            for y in range(part.shape[0]):
                for x in range(part.shape[1]):
                    if part[y][x] == 0.0:
                        blank_[y][x] = 0.0

        # add to strokes list
        strokes.append(blank_)
    return strokes
Ejemplo n.º 5
0
def main():

    # 0107亻  1133壬  0554十 0427凹
    path = "0554十.jpg"

    # open image
    img = cv2.imread(path, 0)
    _, img = cv2.threshold(img, 127, 255, cv2.THRESH_BINARY)
    img_rgb = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)

    # contour without break points
    contour = getContourOfImage(img.copy())
    contour = removeBreakPointsOfContour(contour)
    contour_rgb = cv2.cvtColor(contour, cv2.COLOR_GRAY2RGB)

    contours = splitConnectedComponents(contour)
    print("contours num: %d" % len(contours))

    contours_sorted = []
    for cont in contours:
        points = sortPointsOnContourOfImage(cont)
        print("points num: %d" % len(points))
        contours_sorted.append(points)

    contour_points = []
    for y in range(contour.shape[0]):
        for x in range(contour.shape[1]):
            if contour[y][x] == 0.0:
                # black points
                contour_points.append((x, y))
    print("contour points num:%d" % len(contour_points))

    # skeleton without extra branches
    skeleton = getSkeletonOfImage(img.copy())
    # remove extra branches
    end_points = getEndPointsOfSkeletonLine(skeleton)
    cross_points = getCrossPointsOfSkeletonLine(skeleton)
    print("originale end: %d and cross: %d" %
          (len(end_points), len(cross_points)))
    skeleton_nobranches = removeBranchOfSkeletonLine(skeleton.copy(),
                                                     end_points, cross_points)
    skeleton = skeleton_nobranches
    # new end points and cross points
    end_points = getEndPointsOfSkeletonLine(skeleton)
    cross_points = getCrossPointsOfSkeletonLine(skeleton)
    cross_points_bk = cross_points.copy()

    # merge the close points
    cross_points_merged = []
    cross_distance_threshold = 10
    used_index = []
    for i in range(len(cross_points)):
        if i in used_index:
            continue
        pt1 = cross_points[i]
        midd_pt = None
        used_index.append(i)
        for j in range(len(cross_points)):
            if i == j or j in used_index:
                continue
            pt2 = cross_points[j]

            dist = math.sqrt((pt2[0] - pt1[0])**2 + (pt2[1] - pt1[1])**2)
            if dist < cross_distance_threshold:
                used_index.append(j)
                offset = (pt1[0] - pt2[0], pt1[1] - pt2[1])
                print(offset)
                midd_pt = (pt2[0] + int(offset[0] / 2.),
                           pt2[1] + int(offset[1] / 2.0))
                if skeleton[midd_pt[1]][midd_pt[0]] == 0.0:
                    cross_points_merged.append(midd_pt)
                else:
                    min_distance = 100000000
                    current_pt = None
                    for y in range(skeleton.shape[0]):
                        for x in range(skeleton.shape[1]):
                            if skeleton[y][x] == 0:
                                dist = math.sqrt((midd_pt[0] - x)**2 +
                                                 (midd_pt[1] - y)**2)
                                if dist < min_distance:
                                    min_distance = dist
                                    current_pt = (x, y)
                    if current_pt:
                        cross_points_merged.append(current_pt)

    print("After merge cross points num: %d" % len(cross_points_merged))
    cross_points = cross_points_merged

    print("After end: %d and cross: %d" % (len(end_points), len(cross_points)))
    skeleton_rgb = cv2.cvtColor(skeleton, cv2.COLOR_GRAY2RGB)
    # display all end points
    for pt in end_points:
        skeleton_rgb[pt[1]][pt[0]] = (0, 0, 255)
    for pt in cross_points:
        skeleton_rgb[pt[1]][pt[0]] = (0, 255, 0)
    for pt in cross_points_bk:
        skeleton_rgb[pt[1]][pt[0]] = (0, 0, 255)

    # all corner points on contour
    img = np.float32(img.copy())
    dst = cv2.cornerHarris(img, 3, 3, 0.03)
    dst = cv2.dilate(dst, None)

    corners_area_points = []
    for y in range(dst.shape[0]):
        for x in range(dst.shape[1]):
            if dst[y][x] > 0.1 * dst.max():
                corners_area_points.append((x, y))
    # show the corner points
    for pt in corners_area_points:
        if img[pt[1]][pt[0]] == 0:
            img_rgb[pt[1]][pt[0]] = (0, 255, 0)
        else:
            img_rgb[pt[1]][pt[0]] = (0, 0, 255)
    # all corner area points on the contour
    corners_lines_points = []
    for pt in corners_area_points:
        if pt in contour_points:
            corners_lines_points.append(pt)

    for pt in corners_lines_points:
        contour_rgb[pt[1]][pt[0]] = (0, 255, 0)

    # merge points of corner points
    corners_merged_points = []
    for contour_sorted in contours_sorted:
        i = 0
        while True:
            midd_index = -1
            pt = contour_sorted[i]
            if pt in corners_lines_points:
                # red point
                start = i
                end = start
                while True:
                    end += 1
                    if end >= len(contour_sorted):
                        break
                    # next point
                    next_pt = contour_sorted[end]
                    if next_pt in corners_lines_points:
                        # red point
                        continue
                    else:
                        # black point
                        break
                end -= 1
                midd_index = start + int((end - start) / 2.0)
                i = end
            i += 1
            if i >= len(contour_sorted):
                break
            if midd_index != -1:
                corners_merged_points.append(contour_sorted[midd_index])
    print("After merged, corner points num: %d" % len(corners_merged_points))
    for pt in corners_merged_points:
        contour_rgb[pt[1]][pt[0]] = (0, 0, 255)

    # remove the no-corner points
    corners_points = []
    threshold_distance = 30
    for pt in corners_merged_points:
        dist_cross = min_distance_point2pointlist(pt, cross_points)
        dist_end = min_distance_point2pointlist(pt, end_points)
        if dist_cross < threshold_distance and dist_end > threshold_distance / 3.:
            corners_points.append(pt)
    print("corner pints num: %d" % len(corners_points))
    for pt in corners_points:
        contour_rgb[pt[1]][pt[0]] = (255, 0, 0)

    # segment contour to sub-contours based on the corner points
    def segmentContourBasedOnCornerPoints(contour_sorted, corner_points):
        """
        Segment contour to sub-contours based on the corner points
        :param contour_sorted:
        :param corner_points:
        :return:
        """
        if contour_sorted is None or corner_points is None:
            return
        # sub conotour index
        sub_contour_index = []
        for pt in corner_points:
            index = contour_sorted.index(pt)
            sub_contour_index.append(index)
        print("sub contour index num: %d" % len(sub_contour_index))
        sub_contours = []
        for i in range(len(sub_contour_index)):
            if i == len(sub_contour_index) - 1:
                sub_contour = contour_sorted[sub_contour_index[i]:len(
                    contour_sorted)] + contour_sorted[0:sub_contour_index[0] +
                                                      1]
            else:
                sub_contour = contour_sorted[
                    sub_contour_index[i]:sub_contour_index[i + 1] + 1]
            sub_contours.append(sub_contour)
        print("sub contours num: %d" % len(sub_contours))

        return sub_contours

    # segment contour to sub-contours
    for contour in contours:
        cont_sorted = sortPointsOnContourOfImage(contour)
        sub_contours = segmentContourBasedOnCornerPoints(
            cont_sorted, corners_points)

    # cluster corner points
    corner_points_cluster = []
    used_index = []
    colinear_couple = []
    for i in range(len(corners_points)):
        if i in used_index:
            continue
        for j in range(len(corners_points)):
            if i == j or j in used_index:
                continue
            min_offset = min(abs(corners_points[i][0] - corners_points[j][0]),
                             abs(corners_points[i][1] - corners_points[j][1]))
            if min_offset < 20:
                couple = [corners_points[i], corners_points[j]]
                colinear_couple.append(couple)
                used_index.append(j)
    print("co linear num: %d" % len(colinear_couple))

    print("sub contours num: %d" % len(sub_contours))

    stroke1_img = np.ones_like(contour) * 255
    stroke1_img = np.array(stroke1_img, dtype=np.uint8)
    stroke1_img_rgb = cv2.cvtColor(stroke1_img, cv2.COLOR_GRAY2RGB)

    for pt in sub_contours[0]:
        stroke1_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke1_img[pt[1]][pt[0]] = 0
    for pt in sub_contours[2]:
        stroke1_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke1_img[pt[1]][pt[0]] = 0

    cv2.line(stroke1_img_rgb, sub_contours[0][0], sub_contours[2][-1],
             (0, 0, 255), 1)
    cv2.line(stroke1_img_rgb, sub_contours[0][-1], sub_contours[2][0],
             (0, 0, 255), 1)
    cv2.line(stroke1_img, sub_contours[0][0], sub_contours[2][-1], 0, 1)
    cv2.line(stroke1_img, sub_contours[0][-1], sub_contours[2][0], 0, 1)

    stroke2_img = np.ones_like(contour) * 255
    stroke2_img = np.array(stroke2_img, dtype=np.uint8)
    stroke2_img_rgb = cv2.cvtColor(stroke2_img, cv2.COLOR_GRAY2RGB)

    for pt in sub_contours[1]:
        stroke2_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke2_img[pt[1]][pt[0]] = 0
    for pt in sub_contours[3]:
        stroke2_img_rgb[pt[1]][pt[0]] = (0, 0, 0)
        stroke2_img[pt[1]][pt[0]] = 0

    cv2.line(stroke2_img_rgb, sub_contours[1][0], sub_contours[3][-1],
             (0, 0, 255), 1)
    cv2.line(stroke2_img_rgb, sub_contours[1][-1], sub_contours[3][0],
             (0, 0, 255), 1)
    cv2.line(stroke2_img, sub_contours[1][0], sub_contours[3][-1], 0, 1)
    cv2.line(stroke2_img, sub_contours[1][-1], sub_contours[3][0], 0, 1)

    storke1_points = sortPointsOnContourOfImage(stroke1_img)
    stroke2_points = sortPointsOnContourOfImage(stroke2_img)

    stroke1_img = np.ones_like(stroke1_img) * 255
    stroke1_img = np.array(stroke1_img, dtype=np.uint8)

    storke1_points = np.array([storke1_points], "int32")
    cv2.fillPoly(stroke1_img, storke1_points, 0)

    stroke2_img = np.ones_like(stroke2_img) * 255
    stroke2_img = np.array(stroke2_img, dtype=np.uint8)

    storke2_points = np.array([stroke2_points], "int32")
    cv2.fillPoly(stroke2_img, storke2_points, 0)

    # find corresponding sub-contours based on the co-linear couple
    # for sub in sub_contours:
    #     pt1 = sub[0]
    #     pt2 = sub[-1]
    #
    #     couples = []
    #     for coup in colinear_couple:
    #         if pt1 in coup or pt2 in coup:
    #             # if 4 points, 2 points should be in same sub-contour
    #             if pt1 in coup and pt2 in coup:
    #                 continue
    #             couples.append(coup)
    #     print("sub couples num: %d" % len(couples))

    # cv2.imshow("img rgb", img_rgb)
    # cv2.imshow("skeleton", skeleton)
    # cv2.imshow("skeleton no branches", skeleton_nobranches )
    cv2.imshow("skeleton rgb", skeleton_rgb)
    cv2.imshow("contour rgb", contour_rgb)
    cv2.imshow("stroke 1", stroke1_img)
    cv2.imshow("stroke 2", stroke2_img)
    cv2.imshow("stroke1rgb", stroke1_img_rgb)
    cv2.imshow("stroke2rgb", stroke2_img_rgb)

    # for i in range(len(contours)):
    #     cv2.imshow("contour %d" % i, contours[i])

    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 6
0
def autoSmoothContoursOfComponent(component, eplison=10, max_error=200):
    """
    Automatically smooth the contours of component.
    :param component:
    :return:
    """
    if component is None:
        return

    # 5. Get contours of this component
    component_contours = getContourOfImage(component)
    contours = getConnectedComponents(component_contours, connectivity=8)
    print("contours num: ", len(contours))

    # 6. Process contours to get closed and 1-pixel width contours by removing break points
    contours_processed = []
    for cont in contours:
        cont = removeBreakPointsOfContour(cont)
        contours_processed.append(cont)
    print("contours processed num: %d" % len(contours_processed))

    # 7. Smooth contours with RDP and cubic bezeir fit curve
    contours_smoothed = []
    for cont in contours_processed:
        cont_smoothed = []
        # sorted points on contour
        cont_sorted = sortPointsOnContourOfImage(cont)

        # simplify contour with RDP
        cont_simp = rdp(cont_sorted, eplison)
        print("cont simp num: ", len(cont_simp))

        # split contour into sub-contours
        for i in range(len(cont_simp) - 1):
            start_pt = cont_simp[i]
            end_pt = cont_simp[i + 1]

            start_index = cont_sorted.index(start_pt)
            end_index = cont_sorted.index(end_pt)

            sub_cont_points = np.array(cont_sorted[start_index:end_index + 1])
            beziers = fitCurve(sub_cont_points, maxError=max_error)

            for bez in beziers:
                bezier_points = draw_cubic_bezier(bez[0], bez[1], bez[2],
                                                  bez[3])
                cont_smoothed += bezier_points
        contours_smoothed.append(cont_smoothed)
    print("contours smoothed num: ", len(contours_smoothed))

    # fill black color in contour area
    if len(contours_smoothed) == 1:
        # no hole exist, directly fill black in the contour
        cont = contours_smoothed[0]
        # cont_points = sortPointsOnContourOfImage(cont)
        cont_points = np.array([cont], "int32")

        fill_contour_smooth = np.ones_like(component) * 255
        fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
        fill_contour_smooth = cv2.fillPoly(fill_contour_smooth, cont_points, 0)

        return fill_contour_smooth
    else:
        # exist hole, should processed
        print("there are holes!")
        fill_img_list = []
        hole_points = []
        for cont in contours_smoothed:
            # cont_points = sortPointsOnContourOfImage(cont)
            cont_points = np.array([cont], "int32")

            fill_contour_smooth = np.ones_like(component) * 255
            fill_contour_smooth = np.array(fill_contour_smooth, dtype=np.uint8)
            fill_contour_smooth = cv2.fillPoly(fill_contour_smooth,
                                               cont_points, 0)

            valid_num = same_num = 0
            for y in range(component.shape[0]):
                for x in range(component.shape[1]):
                    if component[y][x] == 0.0:
                        valid_num += 1
                        if fill_contour_smooth[y][x] == 0.0:
                            same_num += 1

            if 1.0 * same_num / valid_num > 0.8:
                fill_img_list.append(fill_contour_smooth)
                print("ratio: %f" % (1.0 * same_num / valid_num))
            else:
                print("ratio: %f" % (1.0 * same_num / valid_num))
                for y in range(fill_contour_smooth.shape[0]):
                    for x in range(fill_contour_smooth.shape[1]):
                        if fill_contour_smooth[y][x] == 0.0:
                            hole_points.append((x, y))

        # merge filled images
        blank_temp = np.ones_like(component) * 255
        for fl in fill_img_list:
            for y in range(fl.shape[0]):
                for x in range(fl.shape[1]):
                    if fl[y][x] == 0.0:
                        blank_temp[y][x] = fl[y][x]
        # hole points
        for pt in hole_points:
            blank_temp[pt[1]][pt[0]] = 255

        return blank_temp