def main():
    args = get_arguments()
    constr_activation = get_constraint(args.activation_bits, 'activation')
    net = mixnet_s(quan_first=True,
                  quan_last=True,
                  constr_activation=constr_activation,
                  preactivation=False,
                  bw_act=args.activation_bits)
    test_loader = dataloader_imagenet(args.data_root, split='test', batch_size=args.batch_size)
    add_lsqmodule(net, bit_width=args.weight_bits)

    name_weights_old = torch.load(args.model_path)
    name_weights_new = net.state_dict()
    name_weights_new.update(name_weights_old)
    load_checkpoint(net, name_weights_new)

    criterion = torch.nn.CrossEntropyLoss()

    score = get_micronet_score(net, args.weight_bits, args.activation_bits)
    
    # Calculate accuracy
    net = net.cuda()

    quan_perf_epoch = eval_performance(net, test_loader, criterion)
    accuracy = quan_perf_epoch[1]

    print("Accuracy:", accuracy)
    print("Score:", score)
Ejemplo n.º 2
0
def main():
    os.chdir(os.path.dirname(__file__))
    args = get_arguments()
    constr_weight = get_constraint(args.weight_bits, 'weight')
    constr_activation = get_constraint(args.activation_bits, 'activation')
    if args.dataset == 'cifar10':
        network = resnet20
        dataloader = dataloader_cifar10
    elif args.dataset == 'cifar100':
        t_net = WRN40_6()
        state = torch.load(
            "/prj/neo_lv/user/ybhalgat/LSQ-KD-0911/cifar100_pretrained/wrn40_6.pth"
        )
        t_net.load_state_dict(state)
        network = WRN40_4
        dataloader = dataloader_cifar100
    else:
        if args.network == 'resnet18':
            network = resnet18
        elif args.network == 'resnet50':
            network = resnet50
        elif args.network == 'efficientnet-b0':
            t_net = EfficientNet.from_pretrained("efficientnet-b1")
            network = efficientnet_b0
        elif args.network == "mixnet_s":
            t_net = MixNet(net_type=args.teacher)
            t_net.load_state_dict(
                torch.load("../imagenet_pretrained/" + args.teacher + ".pth"))
            network = mixnet_s
        else:
            print('Not Support Network Type: %s' % args.network)
            return
        dataloader = dataloader_imagenet
    train_loader = dataloader(args.data_root,
                              split='train',
                              batch_size=args.batch_size)
    test_loader = dataloader(args.data_root,
                             split='test',
                             batch_size=args.batch_size)
    net = network(quan_first=args.quan_first,
                  quan_last=args.quan_last,
                  constr_activation=constr_activation,
                  preactivation=args.preactivation,
                  bw_act=args.activation_bits)

    # net.load_state_dict(name_weights_new, strict=False)
    if args.cem:
        ##### CEM vector for 1.5x_W7A7_CEM prefinetuning 72%
        # cem_input = [7, 7, 7, 7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 6, 7, 7, 7,
        #              7, 7, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 5,
        #              7, 7, 7, 6, 7, 7, 7, 7, 7, 5, 7, 7, 7, 6, 4, 7, 7, 6,
        #              6, 6, 7, 7, 7, 7, 5, 7, 7, 7, 6, 4, 7, 7, 5, 5, 4, 7,
        #              7, 6, 5, 5, 7, 5, 7, 5, 5, 3]

        ##### CEM vector for 1.5x_W7A7_CEM prefinetuning 70%
        cem_input = [
            7, 7, 7, 7, 7, 5, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7,
            7, 7, 7, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 4, 7, 6, 7, 5, 7, 7, 7, 7,
            7, 5, 7, 7, 7, 5, 5, 7, 7, 7, 5, 6, 7, 7, 7, 6, 4, 7, 7, 6, 5, 4,
            7, 6, 5, 5, 4, 7, 7, 6, 5, 4, 7, 7, 6, 5, 5, 3
        ]

        strategy_path = "/prj/neo_lv/user/ybhalgat/LSQ-implementation/lsq_quantizer/cem_strategy_relaxed.txt"
        with open(strategy_path) as fp:
            strategy = fp.readlines()
        strategy = [x.strip().split(",") for x in strategy]

        ##### CEM vector for W6A6_CEM
        # cem_input = [0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
        #              0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1,
        #              0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1,
        #              1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0,
        #              1, 0, 1, 1, 0, 1, 1, 1, 1, 1]

        strat = {}
        act_strat = {}
        for idx, width in enumerate(cem_input):
            weight_layer_name = strategy[idx][1]
            act_layer_name = strategy[idx][0]
            for name, module in net.named_modules():
                if name.startswith('module'):
                    name = name[7:]  # remove `module.`
                if name == weight_layer_name:
                    strat[name] = int(cem_input[idx])
                if name == act_layer_name:
                    act_strat[name] = int(cem_input[idx])

        add_lsqmodule(net, bit_width=args.weight_bits, strategy=strat)

        for name, module in net.named_modules():
            if name in act_strat:
                if "efficientnet" in args.network:
                    if "_in_act_quant" in name or "first_act" in name or "_head_act_quant0" in name or "_head_act_quant1" in name:
                        temp_constr_act = get_constraint(
                            act_strat[name], 'weight')  #symmetric
                    else:
                        temp_constr_act = get_constraint(
                            act_strat[name], 'activation')  #asymmetric
                elif "mixnet" in args.network:
                    if "last_act" in name or "out_act_quant" in name or "first_act" in name:
                        temp_constr_act = get_constraint(
                            act_strat[name], 'weight')  #symmetric
                    else:
                        temp_constr_act = get_constraint(
                            act_strat[name], 'activation')  #asymmetric
                module.constraint = temp_constr_act

    elif args.manual:
        if args.network == "wrn40_4":
            strategy = {
                "block3.layer.0.conv2": 3,
                "block3.layer.2.conv1": 3,
                "block3.layer.3.conv1": 3,
                "block3.layer.4.conv1": 3,
                "block3.layer.2.conv2": 3,
                "block3.layer.1.conv2": 3,
                "block3.layer.3.conv2": 3,
                "block3.layer.1.conv1": 3,
                "block3.layer.5.conv1": 2,
                "block1.layer.1.conv2": 1
            }
            act_strategy = {
                "block3.layer.0.relu2": 3,
                "block3.layer.2.relu1": 3,
                "block3.layer.3.relu1": 3,
                "block3.layer.4.relu1": 3,
                "block3.layer.2.relu2": 3,
                "block3.layer.1.relu2": 3,
                "block3.layer.3.relu2": 3,
                "block3.layer.1.relu1": 3,
                "block3.layer.5.relu1": 2,
                "block1.layer.1.relu2": 1
            }

        elif args.network == 'efficientnet-b0':
            strategy = {
                "_fc": 3,
                "_conv_head": 5,
                "_blocks.15._project_conv": 5,
                "_blocks.15._expand_conv": 4,
                "_blocks.14._expand_conv": 4,
                "_blocks.13._expand_conv": 4,
                "_blocks.12._expand_conv": 4,
                "_blocks.13._project_conv": 4,
                "_blocks.14._project_conv": 4,
                "_blocks.12._project_conv": 5,
                "_blocks.9._expand_conv": 4,
                "_blocks.10._expand_conv": 4
            }
            act_strategy = {
                "_head_act_quant1": 3,
                "_head_act_quant0": 5,
                "_blocks.15._pre_proj_activation": 5,
                "_blocks.15._in_act_quant": 4,
                "_blocks.14._in_act_quant": 4,
                "_blocks.13._in_act_quant": 4,
                "_blocks.12._in_act_quant": 4,
                "_blocks.13._pre_proj_activation": 4,
                "_blocks.14._pre_proj_activation": 4,
                "_blocks.12._pre_proj_activation": 5,
                "_blocks.9._in_act_quant": 4,
                "_blocks.10._in_act_quant": 4
            }
            #strategy = {"_fc": 3,
            #            "_conv_head": 4,
            #            "_blocks.15._project_conv": 4,
            #            "_blocks.14._project_conv": 4,
            #            "_blocks.13._project_conv": 3,
            #            "_blocks.13._expand_conv": 4,
            #            "_blocks.12._project_conv": 4,
            #            "_blocks.12._expand_conv": 5,
            #            "_blocks.14._expand_conv": 4,
            #            "_blocks.15._expand_conv": 4,
            #            "_blocks.9._project_conv": 4}
            #            #"_blocks.10._project_conv": 4,
            #            #"_blocks.9._expand_conv": 4,
            #            #"_blocks.10._expand_conv": 4,
            #            #"_blocks.7._expand_conv": 4,
            #            #"_blocks.11._expand_conv": 4}
            #act_strategy = {"_head_act_quant1": 3,
            #                "_head_act_quant0": 4,
            #                "_blocks.15._pre_proj_activation": 4,
            #                "_blocks.14._pre_proj_activation": 4,
            #                "_blocks.13._pre_proj_activation": 3,
            #                "_blocks.13._in_act_quant": 4,
            #                "_blocks.12._pre_proj_activation": 4,
            #                "_blocks.12._in_act_quant": 5,
            #                "_blocks.14._in_act_quant": 4,
            #                "_blocks.15._in_act_quant": 4,
            #                "_blocks.9._pre_proj_activation": 4}
            #                #"_blocks.10._pre_proj_activation": 4,
            #                #"_blocks.9._in_act_quant": 4,
            #                #"_blocks.10._in_act_quant": 4,
            #                #"_blocks.7._in_act_quant": 4,
            #                #"_blocks.11._in_act_quant": 4}
        add_lsqmodule(net, bit_width=args.weight_bits, strategy=strategy)

        for name, module in net.named_modules():
            if name in act_strategy:
                if "_in_act_quant" in name or "first_act" in name or "_head_act_quant0" in name or "_head_act_quant1" in name:
                    temp_constr_act = get_constraint(act_strategy[name],
                                                     'weight')  #symmetric
                else:
                    temp_constr_act = get_constraint(act_strategy[name],
                                                     'activation')  #asymmetric
                module.constraint = temp_constr_act

    elif args.haq:
        if args.network == 'resnet50':
            strategy = [
                6, 6, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 3, 5, 4, 3, 5,
                4, 3, 4, 4, 4, 2, 5, 4, 3, 3, 5, 3, 2, 5, 3, 2, 4, 3, 2, 5, 3,
                2, 5, 3, 4, 2, 5, 2, 3, 4, 2, 3, 4
            ]
        elif args.network == 'efficientnet-b0':
            strategy = [
                7, 8, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6,
                7, 7, 6, 6, 6, 6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 5, 6, 5, 6, 4,
                5, 6, 5, 6, 4, 4, 5, 4, 5, 2, 3, 4, 3, 4, 2, 3, 4, 4, 7, 5, 2,
                4, 2, 5, 5, 2, 4, 2, 5, 5, 2, 4, 2, 5, 5, 2, 4, 3, 3, 2
            ]
        add_lsqmodule(net, strategy=strategy)

    else:
        add_lsqmodule(net, bit_width=args.weight_bits)

    model_path = os.path.join(args.model_root, args.model_name + '.pth.tar')
    if not os.path.exists(model_path):
        model_path = model_path[:-4]
    name_weights_old = torch.load(model_path)
    name_weights_new = net.state_dict()
    name_weights_new.update(name_weights_old)
    load_checkpoint(net, name_weights_new, strict=False)

    print(net)
    net = net.cuda()
    net = nn.DataParallel(net)

    t_net = t_net.cuda()
    t_net = nn.DataParallel(t_net)

    if args.pruned:
        start_LSQ(net)

    quan_activation = isinstance(constr_activation, np.ndarray)
    postfix = '_w' if not quan_activation else '_a'
    new_model_name = args.prefix + args.model_name + '_lsq' + postfix
    cache_root = os.path.join('.', 'cache')
    train_loger = LogHelper(new_model_name, cache_root, quan_activation,
                            args.resume)
    optimizer, lr_scheduler, optimizer_t, lr_scheduler_t = get_optimizer(
        s_net=net,
        t_net=t_net,
        optimizer=args.optimizer,
        lr_base=args.learning_rate,
        weight_decay=args.weight_decay,
        lr_scheduler=args.lr_scheduler,
        total_epoch=args.total_epoch,
        quan_activation=quan_activation,
        act_lr_factor=args.act_lr_factor,
        weight_lr_factor=args.weight_lr_factor)
    trainer = Trainer(net=net,
                      t_net=t_net,
                      train_loader=train_loader,
                      test_loader=test_loader,
                      optimizer=optimizer,
                      optimizer_t=optimizer_t,
                      lr_scheduler=lr_scheduler,
                      lr_scheduler_t=lr_scheduler_t,
                      model_name=new_model_name,
                      train_loger=train_loger,
                      pruned=args.pruned)
    trainer(total_epoch=args.total_epoch,
            save_check_point=True,
            resume=args.resume)
Ejemplo n.º 3
0
def cem_eval(
        cem_input,
        data_root="/nvme/users/tijmen/imagenet/",
        batch_size=350,
        strategy_path="/prj/neo_lv/user/ybhalgat/LSQ-implementation/lsq_quantizer/cem_strategy_relaxed.txt",
        model_path="/prj/neo_lv/scratch/jinwonl/finetune/lsq_quantizer/models/1.5x_W8A8_CEM_re1/efficientnet-b0.pth",
        activation_bits=7,
        weight_bits=7):

    constr_activation = get_constraint(activation_bits, 'activation')
    network = efficientnet_b0
    dataloader = dataloader_imagenet

    test_loader = dataloader(data_root, split='test', batch_size=batch_size)
    with open(strategy_path) as fp:
        strategy = fp.readlines()
    strategy = [x.strip().split(",") for x in strategy]

    net = network(quan_first=True,
                  quan_last=True,
                  constr_activation=constr_activation,
                  preactivation=False,
                  bw_act=activation_bits)

    strat = {}
    act_strat = {}
    for idx, flag in enumerate(cem_input):
        weight_layer_name = strategy[idx][1]
        act_layer_name = strategy[idx][0]
        for name, module in net.named_modules():
            if name.startswith('module'):
                name = name[7:]  # remove `module.`
            if name == weight_layer_name:
                strat[name] = int(cem_input[idx])
            if name == act_layer_name:
                act_strat[name] = int(cem_input[idx])

    add_lsqmodule(net, bit_width=weight_bits, strategy=strat)

    for name, module in net.named_modules():
        if name in act_strat:
            if "_in_act_quant" in name or "first_act" in name or "_head_act_quant0" in name or "_head_act_quant1" in name:
                temp_constr_act = get_constraint(act_strat[name],
                                                 'weight')  #symmetric
            else:
                temp_constr_act = get_constraint(act_strat[name],
                                                 'activation')  #asymmetric
            module.constraint = temp_constr_act

    net.load_state_dict(torch.load(model_path))
    criterion = nn.CrossEntropyLoss()

    # Calculate score
    flops_model = add_flops_counting_methods(net)
    flops_model.eval().start_flops_count()
    input_res = (3, 224, 224)
    batch = torch.ones(()).new_empty(
        (1, *input_res),
        dtype=next(flops_model.parameters()).dtype,
        device=next(flops_model.parameters()).device)
    _ = flops_model(batch)
    flops_count = flops_model.compute_average_flops_cost(
        bw_weight=activation_bits, bw_act=weight_bits, strategy=(strat, strat))
    params_count = get_model_parameters_number(flops_model,
                                               bw_weight=weight_bits,
                                               w_strategy=strat)
    flops_model.stop_flops_count()

    score = params_count / 6900000.0 + flops_count / 1170000000.0

    # Calculate accuracy
    net = net.cuda()
    net = nn.DataParallel(net, device_ids=range(cuda.device_count()))

    quan_perf_epoch = eval_performance(net, test_loader, criterion)
    accuracy = quan_perf_epoch[1]

    return accuracy, score
def main():
    os.chdir(os.path.dirname(__file__))
    args = get_arguments()
    constr_weight = get_constraint(args.weight_bits, 'weight')
    constr_activation = get_constraint(args.activation_bits, 'activation')
    if args.dataset == 'cifar10':
        network = resnet20
        dataloader = dataloader_cifar10
    elif args.dataset == 'cifar100':
        t_net = ResNet(depth=56, num_classes=100)
        state = torch.load("/prj/neo_lv/user/ybhalgat/LSQ-KD/cifar100_pretrained/resnet56.pth.tar")
        t_net.load_state_dict(state)
        network = resnet20
        dataloader = dataloader_cifar100
    else:
        if args.network == 'resnet18':
            network = resnet18
        elif args.network == 'resnet50':
            network = resnet50
        elif args.network == 'efficientnet-b0':
            t_net = EfficientNet.from_pretrained("efficientnet-b3")
            network = efficientnet_b0
        else:
            print('Not Support Network Type: %s' % args.network)
            return
        dataloader = dataloader_imagenet
    train_loader = dataloader(args.data_root, split='train', batch_size=args.batch_size)
    test_loader = dataloader(args.data_root, split='test', batch_size=args.batch_size)
    net = network(quan_first=args.quan_first,
                  quan_last=args.quan_last,
                  constr_activation=constr_activation,
                  preactivation=args.preactivation,
                  bw_act=args.activation_bits)

    model_path = os.path.join(args.model_root, args.model_name + '.pth.tar')
    if not os.path.exists(model_path):
        model_path = model_path[:-4]
    name_weights_old = torch.load(model_path)
    name_weights_new = net.state_dict()
    name_weights_new.update(name_weights_old)
    load_checkpoint(net, name_weights_new)
    # net.load_state_dict(name_weights_new, strict=False)
    if not args.haq:
        add_lsqmodule(net, bit_width=args.weight_bits)
    else:
        if args.network == 'resnet50':
            strategy = [6, 6, 5, 5, 5, 5, 4, 5, 5, 4, 5, 5, 5, 5, 5, 5, 3, 5, 4, 3, 5, 4, 3, 4, 4, 4, 2, 5,
                        4, 3, 3, 5, 3, 2, 5, 3, 2, 4, 3, 2, 5, 3, 2, 5, 3, 4, 2, 5, 2, 3, 4, 2, 3, 4]
        elif args.network == 'efficientnet-b0':
            strategy = [7, 8, 8, 8, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 6, 6, 6,
                        6, 6, 6, 6, 6, 7, 6, 7, 6, 7, 6, 5, 6, 5, 6, 4, 5, 6, 5, 6, 4, 4, 5, 4, 5, 2,
                        3, 4, 3, 4, 2, 3, 4, 4, 7, 5, 2, 4, 2, 5, 5, 2, 4, 2, 5, 5, 2, 4, 2, 5, 5, 2,
                        4, 3, 3, 2]
        add_lsqmodule(net, strategy=strategy)

    print(net)
    net = net.cuda()
    net = nn.DataParallel(net, device_ids=range(cuda.device_count()))

    t_net = t_net.cuda()
    t_net = nn.DataParallel(t_net, device_ids=range(cuda.device_count()))



    quan_activation = isinstance(constr_activation, np.ndarray)
    postfix = '_w' if not quan_activation else '_a'
    new_model_name = args.prefix + args.model_name + '_lsq' + postfix
    cache_root = os.path.join('.', 'cache')
    train_loger = LogHelper(new_model_name, cache_root, quan_activation, args.resume)
    optimizer, lr_scheduler, optimizer_t = get_optimizer(s_net=net,
                                            t_net=t_net,
                                            optimizer=args.optimizer,
                                            lr_base=args.learning_rate,
                                            weight_decay=args.weight_decay,
                                            lr_scheduler=args.lr_scheduler,
                                            total_epoch=args.total_epoch,
                                            quan_activation=quan_activation,
                                            act_lr_factor=args.act_lr_factor,
                                            weight_lr_factor=args.weight_lr_factor)
    trainer = Trainer(net=net,
                      t_net=t_net,
                      train_loader=train_loader,
                      test_loader=test_loader,
                      optimizer=optimizer,
                      optimizer_t=optimizer_t,
                      lr_scheduler=lr_scheduler,
                      model_name=new_model_name,
                      train_loger=train_loger)
    trainer(total_epoch=args.total_epoch,
            save_check_point=True,
            resume=args.resume)
def main():
    args = get_arguments()
    constr_activation = get_constraint(args.activation_bits, 'activation')

    net = WRN40_4(quan_first=False,
                  quan_last=False,
                  constr_activation=constr_activation,
                  preactivation=False,
                  bw_act=args.activation_bits)
    test_loader = dataloader_cifar100(args.data_root,
                                      split='test',
                                      batch_size=args.batch_size)
    add_lsqmodule(net, bit_width=args.weight_bits)

    if args.cem:
        strategy = {
            "block3.layer.0.conv2": 3,
            "block3.layer.2.conv1": 3,
            "block3.layer.3.conv1": 3,
            "block3.layer.4.conv1": 3,
            "block3.layer.2.conv2": 3,
            "block3.layer.1.conv2": 3,
            "block3.layer.3.conv2": 3,
            "block3.layer.1.conv1": 3,
            "block3.layer.5.conv1": 2,
            "block1.layer.1.conv2": 1
        }
        act_strategy = {
            "block3.layer.0.relu2": 3,
            "block3.layer.2.relu1": 3,
            "block3.layer.3.relu1": 3,
            "block3.layer.4.relu1": 3,
            "block3.layer.2.relu2": 3,
            "block3.layer.1.relu2": 3,
            "block3.layer.3.relu2": 3,
            "block3.layer.1.relu1": 3,
            "block3.layer.5.relu1": 2,
            "block1.layer.1.relu2": 1
        }

        add_lsqmodule(net, bit_width=args.weight_bits, strategy=strategy)

        for name, module in net.named_modules():
            if name in act_strategy:
                if "_in_act_quant" in name or "first_act" in name or "_head_act_quant0" in name or "_head_act_quant1" in name:
                    temp_constr_act = get_constraint(act_strategy[name],
                                                     'weight')  #symmetric
                else:
                    temp_constr_act = get_constraint(act_strategy[name],
                                                     'activation')  #asymmetric
                module.constraint = temp_constr_act

    name_weights_old = torch.load(args.model_path)
    name_weights_new = net.state_dict()
    name_weights_new.update(name_weights_old)
    load_checkpoint(net, name_weights_new)

    criterion = torch.nn.CrossEntropyLoss()

    score = get_micronet_score(net,
                               args.weight_bits,
                               args.activation_bits,
                               weight_strategy=strategy,
                               activation_strategy=act_strategy,
                               input_res=(3, 32, 32),
                               baseline_params=36500000,
                               baseline_MAC=10490000000)

    # Calculate accuracy
    net = net.cuda()

    quan_perf_epoch = eval_performance(net, test_loader, criterion)
    accuracy = quan_perf_epoch[1]

    print("Accuracy:", accuracy)
    print("Score:", score)
def main():
    args = get_arguments()
    constr_activation = get_constraint(args.activation_bits, 'activation')

    net = efficientnet_b0(quan_first=True,
                          quan_last=True,
                          constr_activation=constr_activation,
                          preactivation=False,
                          bw_act=args.activation_bits)
    test_loader = dataloader_imagenet(args.data_root,
                                      split='test',
                                      batch_size=args.batch_size)
    add_lsqmodule(net, bit_width=args.weight_bits)

    if args.cem:
        ##### CEM vector for 1.5x_W7A7_CEM
        cem_input = [
            7, 7, 7, 7, 7, 5, 7, 7, 7, 7, 7, 7, 7, 7, 6, 6, 7, 7, 6, 7, 6, 7,
            7, 7, 7, 6, 7, 7, 7, 7, 6, 7, 7, 7, 7, 4, 7, 6, 7, 5, 7, 7, 7, 7,
            7, 5, 7, 7, 7, 5, 5, 7, 7, 7, 5, 6, 7, 7, 7, 6, 4, 7, 7, 6, 5, 4,
            7, 6, 5, 5, 4, 7, 7, 6, 5, 4, 7, 7, 6, 5, 5, 3
        ]

        strategy_path = "lsq_quantizer/cem_strategy_relaxed.txt"
        with open(strategy_path) as fp:
            strategy = fp.readlines()
        strategy = [x.strip().split(",") for x in strategy]

        strat = {}
        act_strat = {}
        for idx, width in enumerate(cem_input):
            weight_layer_name = strategy[idx][1]
            act_layer_name = strategy[idx][0]
            for name, module in net.named_modules():
                if name.startswith('module'):
                    name = name[7:]  # remove `module.`
                if name == weight_layer_name:
                    strat[name] = int(cem_input[idx])
                if name == act_layer_name:
                    act_strat[name] = int(cem_input[idx])

        add_lsqmodule(net, bit_width=args.weight_bits, strategy=strat)

        for name, module in net.named_modules():
            if name in act_strat:
                if "_in_act_quant" in name or "first_act" in name or "_head_act_quant0" in name or "_head_act_quant1" in name:
                    temp_constr_act = get_constraint(act_strat[name],
                                                     'weight')  #symmetric
                else:
                    temp_constr_act = get_constraint(act_strat[name],
                                                     'activation')  #asymmetric
                module.constraint = temp_constr_act

    name_weights_old = torch.load(args.model_path)
    name_weights_new = net.state_dict()
    name_weights_new.update(name_weights_old)
    load_checkpoint(net, name_weights_new)

    score = get_micronet_score(net,
                               args.weight_bits,
                               args.activation_bits,
                               weight_strategy=strat,
                               activation_strategy=act_strat)

    criterion = torch.nn.CrossEntropyLoss()

    # Calculate accuracy
    net = net.cuda()

    quan_perf_epoch = eval_performance(net, test_loader, criterion)
    accuracy = quan_perf_epoch[1]

    print("Accuracy:", accuracy)
    print("Score:", score)