Ejemplo n.º 1
0
def train_net(config):
    pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
    transform, data_name, label_name, metric_list = config.get_config(is_train=True)
    pGen = patch_config_as_nothrow(pGen)
    pKv = patch_config_as_nothrow(pKv)
    pRpn = patch_config_as_nothrow(pRpn)
    pRoi = patch_config_as_nothrow(pRoi)
    pBbox = patch_config_as_nothrow(pBbox)
    pDataset = patch_config_as_nothrow(pDataset)
    pModel = patch_config_as_nothrow(pModel)
    pOpt = patch_config_as_nothrow(pOpt)
    pTest = patch_config_as_nothrow(pTest)

    ctx = [mx.gpu(int(i)) for i in pKv.gpus]
    pretrain_prefix = pModel.pretrain.prefix
    pretrain_epoch = pModel.pretrain.epoch
    prefix = pGen.name
    save_path = os.path.join("experiments", prefix)
    begin_epoch = pOpt.schedule.begin_epoch
    end_epoch = pOpt.schedule.end_epoch
    lr_iter = pOpt.schedule.lr_iter

    # only rank==0 print all debug infos
    kvstore_type = "dist_sync" if os.environ.get(
        "DMLC_ROLE") == "worker" else pKv.kvstore
    kv = mx.kvstore.create(kvstore_type)
    rank = kv.rank

    # for distributed training using shared file system
    os.makedirs(save_path, exist_ok=True)

    from utils.logger import config_logger
    config_logger(os.path.join(save_path, "log.txt"))

    model_prefix = os.path.join(save_path, "checkpoint")

    # set up logger
    logger = logging.getLogger()

    sym = pModel.train_symbol

    # setup multi-gpu
    input_batch_size = pKv.batch_image * len(ctx)

    # print config
    # if rank == 0:
    #     logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = pDataset.image_set
    roidbs = [
        pkl.load(open("data/cache/{}.roidb".format(i), "rb"),
                 encoding="latin1") for i in image_sets
    ]
    roidb = reduce(lambda x, y: x + y, roidbs)
    # filter empty image
    roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
    # add flip roi record
    flipped_roidb = []
    for rec in roidb:
        new_rec = rec.copy()
        new_rec["flipped"] = True
        flipped_roidb.append(new_rec)
    roidb = roidb + flipped_roidb

    from core.detection_input import AnchorLoader
    train_data = AnchorLoader(roidb=roidb,
                              transform=transform,
                              data_name=data_name,
                              label_name=label_name,
                              batch_size=input_batch_size,
                              shuffle=True,
                              kv=kv,
                              num_worker=pGen.loader_worker or 12,
                              num_collector=pGen.loader_collector or 1,
                              worker_queue_depth=2,
                              collector_queue_depth=2)

    # infer shape
    worker_data_shape = dict(train_data.provide_data +
                             train_data.provide_label)
    for key in worker_data_shape:
        worker_data_shape[key] = (
            pKv.batch_image, ) + worker_data_shape[key][1:]
    arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)

    _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
    out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))

    _, out_shape, _ = sym.infer_shape(**worker_data_shape)
    terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)

    if rank == 0:
        logger.info('parameter shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if not i[0].endswith('output')]))

        logger.info('intermediate output shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if i[0].endswith('output')]))

        logger.info('terminal output shape')
        logger.info(pprint.pformat([i for i in terminal_out_shape_dict]))

    # memonger
    if pModel.memonger:
        last_block = pModel.memonger_until or ""
        if rank == 0:
            logger.info("do memonger up to {}".format(last_block))

        type_dict = {k: np.float32 for k in worker_data_shape}
        sym = search_plan_to_layer(sym,
                                   last_block,
                                   1000,
                                   type_dict=type_dict,
                                   **worker_data_shape)

    # load and initialize params
    if pOpt.schedule.begin_epoch != 0:
        arg_params, aux_params = load_checkpoint(model_prefix, begin_epoch)
    elif pModel.from_scratch:
        arg_params, aux_params = dict(), dict()
    else:
        arg_params, aux_params = load_checkpoint(pretrain_prefix,
                                                 pretrain_epoch)

    if pModel.process_weight is not None:
        pModel.process_weight(sym, arg_params, aux_params)
    '''
    there are some conflicts between `mergebn` and `attach_quantized_node` in graph_optimize.py 
    when mergebn ahead of attach_quantized_node
    such as `Symbol.ComposeKeyword`
    '''
    if pModel.QuantizeTrainingParam is not None and pModel.QuantizeTrainingParam.quantize_flag:
        pQuant = pModel.QuantizeTrainingParam
        assert pGen.fp16 == False, "current quantize training only support fp32 mode."
        from utils.graph_optimize import attach_quantize_node
        _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
        out_shape_dictoinary = dict(
            zip(sym.get_internals().list_outputs(), out_shape))
        sym = attach_quantize_node(sym, out_shape_dictoinary,
                                   pQuant.WeightQuantizeParam,
                                   pQuant.ActQuantizeParam,
                                   pQuant.quantized_op)
    # merge batch normalization to save memory in fix bn training
    from utils.graph_optimize import merge_bn
    sym, arg_params, aux_params = merge_bn(sym, arg_params, aux_params)

    if pModel.random:
        import time
        mx.random.seed(int(time.time()))
        np.random.seed(int(time.time()))

    init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
    init.set_verbosity(verbose=True)

    # create solver
    fixed_param = pModel.pretrain.fixed_param
    excluded_param = pModel.pretrain.excluded_param
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]

    if pModel.teacher_param:
        from models.KD.utils import create_teacher_module
        from models.KD.detection_module import KDDetModule
        t_mod, t_label_name, t_label_shape = create_teacher_module(
            pModel.teacher_param, worker_data_shape, input_batch_size, ctx,
            rank, logger)
        mod = KDDetModule(sym,
                          teacher_module=t_mod,
                          teacher_label_names=t_label_name,
                          teacher_label_shapes=t_label_shape,
                          data_names=data_names,
                          label_names=label_names,
                          logger=logger,
                          context=ctx,
                          fixed_param=fixed_param,
                          excluded_param=excluded_param)
    else:
        mod = DetModule(sym,
                        data_names=data_names,
                        label_names=label_names,
                        logger=logger,
                        context=ctx,
                        fixed_param=fixed_param,
                        excluded_param=excluded_param)

    eval_metrics = mx.metric.CompositeEvalMetric(metric_list)

    # callback
    batch_end_callback = [
        callback.Speedometer(train_data.batch_size,
                             frequent=pGen.log_frequency)
    ]
    batch_end_callback += pModel.batch_end_callbacks or []
    epoch_end_callback = callback.do_checkpoint(model_prefix)
    sym.save(model_prefix + ".json")

    # decide learning rate
    lr_mode = pOpt.optimizer.lr_mode or 'step'
    base_lr = pOpt.optimizer.lr * kv.num_workers
    lr_factor = pOpt.schedule.lr_factor or 0.1

    iter_per_epoch = len(train_data) // input_batch_size
    total_iter = iter_per_epoch * (end_epoch - begin_epoch)
    lr_iter = [total_iter + it if it < 0 else it for it in lr_iter]
    lr_iter = [it // kv.num_workers for it in lr_iter]
    lr_iter = [it - iter_per_epoch * begin_epoch for it in lr_iter]
    lr_iter_discount = [it for it in lr_iter if it > 0]
    current_lr = base_lr * (lr_factor**(len(lr_iter) - len(lr_iter_discount)))
    if rank == 0:
        logging.info('total iter {}'.format(total_iter))
        logging.info('lr {}, lr_iters {}'.format(current_lr, lr_iter_discount))
        logging.info('lr mode: {}'.format(lr_mode))

    if pOpt.warmup and pOpt.schedule.begin_epoch == 0:
        if rank == 0:
            logging.info('warmup lr {}, warmup step {}'.format(
                pOpt.warmup.lr, pOpt.warmup.iter))
        if lr_mode == 'step':
            lr_scheduler = WarmupMultiFactorScheduler(
                step=lr_iter_discount,
                factor=lr_factor,
                warmup=True,
                warmup_type=pOpt.warmup.type,
                warmup_lr=pOpt.warmup.lr,
                warmup_step=pOpt.warmup.iter)
        elif lr_mode == 'cosine':
            warmup_lr_scheduler = AdvancedLRScheduler(mode='linear',
                                                      base_lr=pOpt.warmup.lr,
                                                      target_lr=base_lr,
                                                      niters=pOpt.warmup.iter)
            cosine_lr_scheduler = AdvancedLRScheduler(
                mode='cosine',
                base_lr=base_lr,
                target_lr=0,
                niters=(iter_per_epoch *
                        (end_epoch - begin_epoch)) - pOpt.warmup.iter)
            lr_scheduler = LRSequential(
                [warmup_lr_scheduler, cosine_lr_scheduler])
        else:
            raise NotImplementedError
    else:
        if lr_mode == 'step':
            lr_scheduler = WarmupMultiFactorScheduler(step=lr_iter_discount,
                                                      factor=lr_factor)
        elif lr_mode == 'cosine':
            lr_scheduler = AdvancedLRScheduler(mode='cosine',
                                               base_lr=base_lr,
                                               target_lr=0,
                                               niters=iter_per_epoch *
                                               (end_epoch - begin_epoch))
        else:
            lr_scheduler = None

    # optimizer
    optimizer_params = dict(momentum=pOpt.optimizer.momentum,
                            wd=pOpt.optimizer.wd,
                            learning_rate=current_lr,
                            lr_scheduler=lr_scheduler,
                            rescale_grad=1.0 / (len(ctx) * kv.num_workers),
                            clip_gradient=pOpt.optimizer.clip_gradient)

    if pKv.fp16:
        optimizer_params['multi_precision'] = True
        optimizer_params['rescale_grad'] /= 128.0

    profile = pGen.profile or False
    if profile:
        mx.profiler.set_config(profile_all=True,
                               filename=os.path.join(save_path,
                                                     "profile.json"))

    # train
    mod.fit(train_data=train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kv,
            optimizer=pOpt.optimizer.type,
            optimizer_params=optimizer_params,
            initializer=init,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch,
            profile=profile)

    logging.info("Training has done")
    time.sleep(10)
    logging.info("Exiting")
Ejemplo n.º 2
0
def train_net(config):
    pGen, pKv, pRpn, pRoi, pBbox, pDataset, pModel, pOpt, pTest, \
    transform, data_name, label_name, metric_list = config.get_config(is_train=True)

    ctx = [mx.gpu(int(i)) for i in pKv.gpus]
    pretrain_prefix = pModel.pretrain.prefix
    pretrain_epoch = pModel.pretrain.epoch
    prefix = pGen.name
    save_path = os.path.join("experiments", prefix)
    begin_epoch = pOpt.schedule.begin_epoch
    end_epoch = pOpt.schedule.end_epoch
    lr_iter = pOpt.schedule.lr_iter

    # only rank==0 print all debug infos
    kvstore_type = "dist_sync" if os.environ.get(
        "DMLC_ROLE") == "worker" else pKv.kvstore
    kv = mx.kvstore.create(kvstore_type)
    rank = kv.rank

    # for distributed training using shared file system
    if rank == 0:
        if not os.path.exists(save_path):
            os.makedirs(save_path)

    from utils.logger import config_logger
    config_logger(os.path.join(save_path, "log.txt"))

    model_prefix = os.path.join(save_path, "checkpoint")

    # set up logger
    logger = logging.getLogger()

    sym = pModel.train_symbol

    # setup multi-gpu
    input_batch_size = pKv.batch_image * len(ctx)

    # print config
    # if rank == 0:
    #     logger.info(pprint.pformat(config))

    # load dataset and prepare imdb for training
    image_sets = pDataset.image_set
    roidbs = [
        pkl.load(open("data/cache/{}.roidb".format(i), "rb"),
                 encoding="latin1") for i in image_sets
    ]
    roidb = reduce(lambda x, y: x + y, roidbs)
    # filter empty image
    roidb = [rec for rec in roidb if rec["gt_bbox"].shape[0] > 0]
    # add flip roi record
    flipped_roidb = []
    for rec in roidb:
        new_rec = rec.copy()
        new_rec["flipped"] = True
        flipped_roidb.append(new_rec)
    roidb = roidb + flipped_roidb

    from core.detection_input import AnchorLoader
    train_data = AnchorLoader(roidb=roidb,
                              transform=transform,
                              data_name=data_name,
                              label_name=label_name,
                              batch_size=input_batch_size,
                              shuffle=True,
                              kv=kv)

    # infer shape
    worker_data_shape = dict(train_data.provide_data +
                             train_data.provide_label)
    for key in worker_data_shape:
        worker_data_shape[key] = (
            pKv.batch_image, ) + worker_data_shape[key][1:]
    arg_shape, _, aux_shape = sym.infer_shape(**worker_data_shape)

    _, out_shape, _ = sym.get_internals().infer_shape(**worker_data_shape)
    out_shape_dict = list(zip(sym.get_internals().list_outputs(), out_shape))

    _, out_shape, _ = sym.infer_shape(**worker_data_shape)
    terminal_out_shape_dict = zip(sym.list_outputs(), out_shape)

    if rank == 0:
        logger.info('parameter shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if not i[0].endswith('output')]))

        logger.info('intermediate output shape')
        logger.info(
            pprint.pformat(
                [i for i in out_shape_dict if i[0].endswith('output')]))

        logger.info('terminal output shape')
        logger.info(pprint.pformat([i for i in terminal_out_shape_dict]))

    # memonger
    if pModel.memonger:
        last_block = pModel.memonger_until or ""
        if rank == 0:
            logger.info("do memonger up to {}".format(last_block))

        type_dict = {k: np.float32 for k in worker_data_shape}
        sym = search_plan_to_layer(sym,
                                   last_block,
                                   1000,
                                   type_dict=type_dict,
                                   **worker_data_shape)

    # load and initialize params
    if pOpt.schedule.begin_epoch != 0:
        arg_params, aux_params = load_checkpoint(model_prefix, begin_epoch)
    elif pModel.from_scratch:
        arg_params, aux_params = dict(), dict()
    else:
        arg_params, aux_params = load_checkpoint(pretrain_prefix,
                                                 pretrain_epoch)

    try:
        pModel.process_weight(sym, arg_params, aux_params)
    except AttributeError:
        pass

    if pModel.random:
        import time
        mx.random.seed(int(time.time()))
        np.random.seed(int(time.time()))

    init = mx.init.Xavier(factor_type="in", rnd_type='gaussian', magnitude=2)
    init.set_verbosity(verbose=True)

    # create solver
    fixed_param_prefix = pModel.pretrain.fixed_param
    data_names = [k[0] for k in train_data.provide_data]
    label_names = [k[0] for k in train_data.provide_label]

    mod = DetModule(sym,
                    data_names=data_names,
                    label_names=label_names,
                    logger=logger,
                    context=ctx,
                    fixed_param_prefix=fixed_param_prefix)

    eval_metrics = mx.metric.CompositeEvalMetric(metric_list)

    # callback
    batch_end_callback = callback.Speedometer(train_data.batch_size,
                                              frequent=pGen.log_frequency)
    epoch_end_callback = callback.do_checkpoint(model_prefix)
    sym.save(model_prefix + ".json")

    # decide learning rate
    base_lr = pOpt.optimizer.lr * kv.num_workers
    lr_factor = 0.1

    iter_per_epoch = len(train_data) // input_batch_size
    lr_iter = [it // kv.num_workers for it in lr_iter]
    lr_iter = [it - iter_per_epoch * begin_epoch for it in lr_iter]
    lr_iter_discount = [it for it in lr_iter if it > 0]
    current_lr = base_lr * (lr_factor**(len(lr_iter) - len(lr_iter_discount)))
    if rank == 0:
        logging.info('total iter {}'.format(iter_per_epoch *
                                            (end_epoch - begin_epoch)))
        logging.info('lr {}, lr_iters {}'.format(current_lr, lr_iter_discount))
    if pOpt.warmup is not None and pOpt.schedule.begin_epoch == 0:
        if rank == 0:
            logging.info('warmup lr {}, warmup step {}'.format(
                pOpt.warmup.lr, pOpt.warmup.iter))

        lr_scheduler = WarmupMultiFactorScheduler(step=lr_iter_discount,
                                                  factor=lr_factor,
                                                  warmup=True,
                                                  warmup_type=pOpt.warmup.type,
                                                  warmup_lr=pOpt.warmup.lr,
                                                  warmup_step=pOpt.warmup.iter)
    else:
        if len(lr_iter_discount) > 0:
            lr_scheduler = mx.lr_scheduler.MultiFactorScheduler(
                lr_iter_discount, lr_factor)
        else:
            lr_scheduler = None

    # optimizer
    optimizer_params = dict(momentum=pOpt.optimizer.momentum,
                            wd=pOpt.optimizer.wd,
                            learning_rate=current_lr,
                            lr_scheduler=lr_scheduler,
                            rescale_grad=1.0 /
                            (len(pKv.gpus) * kv.num_workers),
                            clip_gradient=pOpt.optimizer.clip_gradient)

    if pKv.fp16:
        optimizer_params['multi_precision'] = True
        optimizer_params['rescale_grad'] /= 128.0

    # train
    mod.fit(train_data=train_data,
            eval_metric=eval_metrics,
            epoch_end_callback=epoch_end_callback,
            batch_end_callback=batch_end_callback,
            kvstore=kv,
            optimizer=pOpt.optimizer.type,
            optimizer_params=optimizer_params,
            initializer=init,
            allow_missing=True,
            arg_params=arg_params,
            aux_params=aux_params,
            begin_epoch=begin_epoch,
            num_epoch=end_epoch)

    logging.info("Training has done")