Ejemplo n.º 1
0
    def transform_and_pad_input_data_fn(tensor_dict):
      """Combines transform and pad operation."""
      data_augmentation_options = [
          preprocessor_builder.build(step)
          for step in train_config.data_augmentation_options
      ]
      data_augmentation_fn = functools.partial(
          augment_input_data,
          data_augmentation_options=data_augmentation_options)
      model = model_builder.build(model_config, is_training=True)
      image_resizer_config = config_util.get_image_resizer_config(model_config)
      image_resizer_fn = image_resizer_builder.build(image_resizer_config)
      transform_data_fn = functools.partial(
          transform_input_data, model_preprocess_fn=model.preprocess,
          image_resizer_fn=image_resizer_fn,
          num_classes=config_util.get_number_of_classes(model_config),
          data_augmentation_fn=data_augmentation_fn,
          merge_multiple_boxes=train_config.merge_multiple_label_boxes,
          retain_original_image=train_config.retain_original_images,
          use_multiclass_scores=train_config.use_multiclass_scores,
          use_bfloat16=train_config.use_bfloat16)

      tensor_dict = pad_input_data_to_static_shapes(
          tensor_dict=transform_data_fn(tensor_dict),
          max_num_boxes=train_input_config.max_number_of_boxes,
          num_classes=config_util.get_number_of_classes(model_config),
          spatial_image_shape=config_util.get_spatial_image_size(
              image_resizer_config))
      return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
    def _predict_input_fn(params=None):
        """Decodes serialized tf.Examples and returns `ServingInputReceiver`.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      `ServingInputReceiver`.
    """
        del params
        example = tf.placeholder(dtype=tf.string,
                                 shape=[],
                                 name='input_feature')

        num_classes = config_util.get_number_of_classes(model_config)
        model = model_builder.build(model_config, is_training=False)
        image_resizer_config = config_util.get_image_resizer_config(
            model_config)
        image_resizer_fn = image_resizer_builder.build(image_resizer_config)

        transform_fn = functools.partial(transform_input_data,
                                         model_preprocess_fn=model.preprocess,
                                         image_resizer_fn=image_resizer_fn,
                                         num_classes=num_classes,
                                         data_augmentation_fn=None)

        decoder = tf_example_decoder.TfExampleDecoder(
            load_instance_masks=False)
        input_dict = transform_fn(decoder.decode(example))
        images = tf.to_float(input_dict[fields.InputDataFields.image])
        images = tf.expand_dims(images, axis=0)

        return tf.estimator.export.ServingInputReceiver(
            features={fields.InputDataFields.image: images},
            receiver_tensors={SERVING_FED_EXAMPLE_KEY: example})
Ejemplo n.º 3
0
    def transform_and_pad_input_data_fn(tensor_dict):
      """Combines transform and pad operation."""
      num_classes = config_util.get_number_of_classes(model_config)
      model = model_builder.build(model_config, is_training=False)
      image_resizer_config = config_util.get_image_resizer_config(model_config)
      image_resizer_fn = image_resizer_builder.build(image_resizer_config)

      transform_data_fn = functools.partial(
          transform_input_data, model_preprocess_fn=model.preprocess,
          image_resizer_fn=image_resizer_fn,
          num_classes=num_classes,
          data_augmentation_fn=None,
          retain_original_image=eval_config.retain_original_images)
      tensor_dict = pad_input_data_to_static_shapes(
          tensor_dict=transform_data_fn(tensor_dict),
          max_num_boxes=eval_input_config.max_number_of_boxes,
          num_classes=config_util.get_number_of_classes(model_config),
          spatial_image_shape=config_util.get_spatial_image_size(
              image_resizer_config))
      return (_get_features_dict(tensor_dict), _get_labels_dict(tensor_dict))
    def testGetNumberOfClasses(self):
        """Tests that number of classes can be retrieved."""
        pipeline_config_path = os.path.join(self.get_temp_dir(),
                                            "pipeline.config")
        pipeline_config = pipeline_pb2.TrainEvalPipelineConfig()
        pipeline_config.model.faster_rcnn.num_classes = 20
        _write_config(pipeline_config, pipeline_config_path)

        configs = config_util.get_configs_from_pipeline_file(
            pipeline_config_path)
        number_of_classes = config_util.get_number_of_classes(configs["model"])
        self.assertEqual(20, number_of_classes)
    def _eval_input_fn(params=None):
        """Returns `features` and `labels` tensor dictionaries for evaluation.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      features: Dictionary of feature tensors.
        features[fields.InputDataFields.image] is a [1, H, W, C] float32 tensor
          with preprocessed images.
        features[HASH_KEY] is a [1] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [1, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
        features[fields.InputDataFields.original_image] is a [1, H', W', C]
          float32 tensor with the original image.
      labels: Dictionary of groundtruth tensors.
        labels[fields.InputDataFields.groundtruth_boxes] is a [1, num_boxes, 4]
          float32 tensor containing the corners of the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [num_boxes, num_classes] float32 one-hot tensor of classes.
        labels[fields.InputDataFields.groundtruth_area] is a [1, num_boxes]
          float32 tensor containing object areas.
        labels[fields.InputDataFields.groundtruth_is_crowd] is a [1, num_boxes]
          bool tensor indicating if the boxes enclose a crowd.
        labels[fields.InputDataFields.groundtruth_difficult] is a [1, num_boxes]
          int32 tensor indicating if the boxes represent difficult instances.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [1, num_boxes, H, W] float32 tensor containing only binary values,
          which represent instance masks for objects.

    Raises:
      TypeError: if the `eval_config` or `eval_input_config` are not of the
        correct type.
    """
        del params
        if not isinstance(eval_config, eval_pb2.EvalConfig):
            raise TypeError('For eval mode, the `eval_config` must be a '
                            'train_pb2.EvalConfig.')
        if not isinstance(eval_input_config, input_reader_pb2.InputReader):
            raise TypeError('The `eval_input_config` must be a '
                            'input_reader_pb2.InputReader.')
        if not isinstance(model_config, model_pb2.DetectionModel):
            raise TypeError('The `model_config` must be a '
                            'model_pb2.DetectionModel.')

        num_classes = config_util.get_number_of_classes(model_config)
        model = model_builder.build(model_config, is_training=False)
        image_resizer_config = config_util.get_image_resizer_config(
            model_config)
        image_resizer_fn = image_resizer_builder.build(image_resizer_config)

        transform_data_fn = functools.partial(
            transform_input_data,
            model_preprocess_fn=model.preprocess,
            image_resizer_fn=image_resizer_fn,
            num_classes=num_classes,
            data_augmentation_fn=None,
            retain_original_image=True)
        dataset = dataset_builder.build(
            eval_input_config, transform_input_data_fn=transform_data_fn)
        input_dict = dataset_util.make_initializable_iterator(
            dataset).get_next()

        hash_from_source_id = tf.string_to_hash_bucket_fast(
            input_dict[fields.InputDataFields.source_id], HASH_BINS)
        features = {
            fields.InputDataFields.image:
            input_dict[fields.InputDataFields.image],
            fields.InputDataFields.original_image:
            input_dict[fields.InputDataFields.original_image],
            HASH_KEY:
            tf.cast(hash_from_source_id, tf.int32),
            fields.InputDataFields.true_image_shape:
            input_dict[fields.InputDataFields.true_image_shape]
        }

        labels = {
            fields.InputDataFields.groundtruth_boxes:
            input_dict[fields.InputDataFields.groundtruth_boxes],
            fields.InputDataFields.groundtruth_classes:
            input_dict[fields.InputDataFields.groundtruth_classes],
            fields.InputDataFields.groundtruth_area:
            input_dict[fields.InputDataFields.groundtruth_area],
            fields.InputDataFields.groundtruth_is_crowd:
            input_dict[fields.InputDataFields.groundtruth_is_crowd],
            fields.InputDataFields.groundtruth_difficult:
            tf.cast(input_dict[fields.InputDataFields.groundtruth_difficult],
                    tf.int32)
        }
        if fields.InputDataFields.groundtruth_instance_masks in input_dict:
            labels[fields.InputDataFields.
                   groundtruth_instance_masks] = input_dict[
                       fields.InputDataFields.groundtruth_instance_masks]

        # Add a batch dimension to the tensors.
        features = {
            key: tf.expand_dims(features[key], axis=0)
            for key, feature in features.items()
        }
        labels = {
            key: tf.expand_dims(labels[key], axis=0)
            for key, label in labels.items()
        }

        return features, labels
    def _train_input_fn(params=None):
        """Returns `features` and `labels` tensor dictionaries for training.

    Args:
      params: Parameter dictionary passed from the estimator.

    Returns:
      features: Dictionary of feature tensors.
        features[fields.InputDataFields.image] is a [batch_size, H, W, C]
          float32 tensor with preprocessed images.
        features[HASH_KEY] is a [batch_size] int32 tensor representing unique
          identifiers for the images.
        features[fields.InputDataFields.true_image_shape] is a [batch_size, 3]
          int32 tensor representing the true image shapes, as preprocessed
          images could be padded.
      labels: Dictionary of groundtruth tensors.
        labels[fields.InputDataFields.num_groundtruth_boxes] is a [batch_size]
          int32 tensor indicating the number of groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_boxes] is a
          [batch_size, num_boxes, 4] float32 tensor containing the corners of
          the groundtruth boxes.
        labels[fields.InputDataFields.groundtruth_classes] is a
          [batch_size, num_boxes, num_classes] float32 one-hot tensor of
          classes.
        labels[fields.InputDataFields.groundtruth_weights] is a
          [batch_size, num_boxes] float32 tensor containing groundtruth weights
          for the boxes.
        -- Optional --
        labels[fields.InputDataFields.groundtruth_instance_masks] is a
          [batch_size, num_boxes, H, W] float32 tensor containing only binary
          values, which represent instance masks for objects.
        labels[fields.InputDataFields.groundtruth_keypoints] is a
          [batch_size, num_boxes, num_keypoints, 2] float32 tensor containing
          keypoints for each box.

    Raises:
      TypeError: if the `train_config` or `train_input_config` are not of the
        correct type.
    """
        if not isinstance(train_config, train_pb2.TrainConfig):
            raise TypeError('For training mode, the `train_config` must be a '
                            'train_pb2.TrainConfig.')
        if not isinstance(train_input_config, input_reader_pb2.InputReader):
            raise TypeError('The `train_input_config` must be a '
                            'input_reader_pb2.InputReader.')
        if not isinstance(model_config, model_pb2.DetectionModel):
            raise TypeError('The `model_config` must be a '
                            'model_pb2.DetectionModel.')

        data_augmentation_options = [
            preprocessor_builder.build(step)
            for step in train_config.data_augmentation_options
        ]
        data_augmentation_fn = functools.partial(
            augment_input_data,
            data_augmentation_options=data_augmentation_options)

        model = model_builder.build(model_config, is_training=True)
        image_resizer_config = config_util.get_image_resizer_config(
            model_config)
        image_resizer_fn = image_resizer_builder.build(image_resizer_config)

        transform_data_fn = functools.partial(
            transform_input_data,
            model_preprocess_fn=model.preprocess,
            image_resizer_fn=image_resizer_fn,
            num_classes=config_util.get_number_of_classes(model_config),
            data_augmentation_fn=data_augmentation_fn)
        dataset = dataset_builder.build(
            train_input_config,
            transform_input_data_fn=transform_data_fn,
            batch_size=params['batch_size']
            if params else train_config.batch_size,
            max_num_boxes=train_config.max_number_of_boxes,
            num_classes=config_util.get_number_of_classes(model_config),
            spatial_image_shape=config_util.get_spatial_image_size(
                image_resizer_config))
        tensor_dict = dataset_util.make_initializable_iterator(
            dataset).get_next()

        hash_from_source_id = tf.string_to_hash_bucket_fast(
            tensor_dict[fields.InputDataFields.source_id], HASH_BINS)
        features = {
            fields.InputDataFields.image:
            tensor_dict[fields.InputDataFields.image],
            HASH_KEY:
            tf.cast(hash_from_source_id, tf.int32),
            fields.InputDataFields.true_image_shape:
            tensor_dict[fields.InputDataFields.true_image_shape]
        }

        labels = {
            fields.InputDataFields.num_groundtruth_boxes:
            tensor_dict[fields.InputDataFields.num_groundtruth_boxes],
            fields.InputDataFields.groundtruth_boxes:
            tensor_dict[fields.InputDataFields.groundtruth_boxes],
            fields.InputDataFields.groundtruth_classes:
            tensor_dict[fields.InputDataFields.groundtruth_classes],
            fields.InputDataFields.groundtruth_weights:
            tensor_dict[fields.InputDataFields.groundtruth_weights]
        }
        if fields.InputDataFields.groundtruth_keypoints in tensor_dict:
            labels[fields.InputDataFields.groundtruth_keypoints] = tensor_dict[
                fields.InputDataFields.groundtruth_keypoints]
        if fields.InputDataFields.groundtruth_instance_masks in tensor_dict:
            labels[fields.InputDataFields.
                   groundtruth_instance_masks] = tensor_dict[
                       fields.InputDataFields.groundtruth_instance_masks]

        return features, labels