Ejemplo n.º 1
0
    def __init__(self,
                 data,
                 labeled_percent,
                 num_classes,
                 feature_shape,
                 label_shape,
                 embeddings=None,
                 use_embedding=False):

        assert isinstance(data, np.ndarray)

        # self._data = xar.Dataset({'feature': xar.DataArray(data[0]), 'label': data[1]})
        # self._data = pd.DataFrame(data={'id': [str(i) for i in range(len(data[0]))],
        #                                 'feature': data[0],
        #                                 'label': data[1]},
        #                           columns=['id', 'feature', 'label'])
        # self._data_l = self._data.iloc[labeled_indices]
        # self._data_u = self._data.iloc[unlabeled_indices]
        self._data = data

        unlabeled_indices, labeled_indices, _ = data_utils.split_dataset(
            data,
            labeled_percent,
            0,
            num_classes=num_classes,
            ret_indices=True)
        self._data_l = data[labeled_indices]
        self._data_u = data[unlabeled_indices]

        self._num_classes = num_classes
        self._feature_shape = feature_shape
        self._label_shape = label_shape
        self._embeddings = np.array(
            embeddings) if embeddings is not None else None

        if self._embeddings is not None:
            self._embedded_data = self._embeddings
            self._embedded_data_u = self._embeddings[unlabeled_indices]
            self._embedded_data_l = self._embeddings[labeled_indices]
        elif use_embedding:
            print("Start embedding.")
            _tmp_data = np.array(
                data['feature'].tolist()).reshape(feature_shape)
            if np.ndim(data) == 4:
                _tmp_data = np.sum(_tmp_data, axis=-1)

            # Reshape.
            shape = [_tmp_data.shape[0], 1]
            for i in range(1, np.ndim(_tmp_data)):
                shape[1] *= _tmp_data.shape[i]
            _tmp_data = _tmp_data.reshape(shape)

            embedding_func = manifold.SpectralEmbedding(n_components=128)
            self._embedded_data = embedding_func.fit_transform(_tmp_data)
            self._embedded_data_l = self._embedded_data[unlabeled_indices]
            self._embedded_data_u = self._embedded_data[labeled_indices]

            print('Embedding finished, time %s' % time.time())
Ejemplo n.º 2
0
def retrieve(image_dir, gallery_dir, model_path, gallery_encode, feature_code):
    """
    :param image_dir: 图片根目录,内有两个子文件夹,query和gallery,都保存有图片
    :param gallery_dir: build_gallery将数据保存在此目录,single_query从此目录读取数据
    :param model_path: 加载指定模型
    :param gallery_encode: True 则进行特征编码,否则加载已经保存的文件
    :param feature_code: 1-scda ,2-scda_flip,3-scda_plus,4-scda_flip_plus.input_batch and output_layer also different
    :return:
    """
    # check dir
    assert os.path.isdir(gallery_dir), 'no directory name {}'.format(
        gallery_dir)  # 保存gallery的文件夹
    assert os.path.isdir(image_dir), 'no directory name {}'.format(
        image_dir)  # 数据集文件夹
    assert os.path.isfile(model_path), 'model path not given!'

    # build model
    input_shape = (None, None, None, 3)
    images = tf.placeholder(shape=input_shape, dtype=tf.float32)
    final_output, feature_dict = vgg.vgg_16(inputs=images,
                                            num_classes=None,
                                            is_training=False)
    # print(feature_dict)
    feature_1 = feature_dict['vgg_16/pool5']
    feature_2 = feature_dict['vgg_16/conv5/conv5_2']
    # final output node depend on feature code
    if feature_code == 1 or feature_code == 2:
        feature = feature_1
    else:
        feature = [feature_1, feature_2]

    # restore 过滤掉一些不需要加载参数 返回dict可以将保存的变量对应到模型中新的变量,返回list直接加载
    include_vars_map = None
    saver = tf.train.Saver(include_vars_map)

    # define session
    with tf.Session() as sess:
        # load param
        sess.run(tf.global_variables_initializer())
        print(model_path)
        saver.restore(sess, model_path)

        # data_set
        query_im_paths, query_labels, gallery_im_paths, gallery_labels = data_utils.split_dataset(
            image_dir)

        # gallery特征提取或加载
        if gallery_encode:
            gallery_features = build_gallery(sess, images, feature,
                                             feature_code, gallery_im_paths,
                                             gallery_dir)
        else:
            gallery_features = np.load(
                os.path.join(gallery_dir, 'gallery_features.npy'))

        # 开始检索
        query(sess, images, feature, feature_code, query_im_paths,
              gallery_features, query_labels, gallery_labels)
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(description='Linear Regression test')
    parser.add_argument('-n',
                        '--n_iter',
                        type=int,
                        default=50,
                        help='number of iterations for grad_descent')
    parser.add_argument('-f',
                        '--n_features',
                        type=int,
                        default=2,
                        help='number of features')
    args = parser.parse_args()
    n_iter = args.n_iter
    n_features = args.n_features

    X, y, centers = generate_classification_data(n_features=n_features)
    X_train, X_test, y_train, y_test = split_dataset(X, y)
    print("Training size: %s, Test size %s" % (len(X_train), len(X_test)))
    print("-" * 20)

    # Plotting dataset
    plot_points_and_cluster(X, centers)

    # Fit and predict
    model = LogisticRegression(n_iter=n_iter)
    model.fit(X_train, y_train)
    y_pred = model.predict(X_test)
    print("-" * 20)

    # Scoring
    model.score(y_test, y_pred)
    print("-" * 20)

    # Plot decision boundary
    if n_features == 2:
        plot_logistic_regression_decision_boundary(X, y, model)

    # Plot iteration vs cost
    plot_iteration_vs_cost(n_iter, model.cost_h)
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser(description='Linear Regression test')
    parser.add_argument('-m',
                        '--method',
                        type=str,
                        default='ols',
                        help='model method: ols or grad_descent')
    parser.add_argument('-n',
                        '--n_iter',
                        type=int,
                        default=50,
                        help='number of iterations for grad_descent')
    args = parser.parse_args()
    method = args.method
    n_iter = args.n_iter

    X, y, m, bias = \
        generate_linear_data(n_samples=1000, n_features=10, bias=10)
    X_train, X_test, y_train, y_test = split_dataset(X, y)
    print("Training size: %s, Test size %s" % (len(X_train), len(X_test)))
    print("-" * 20)

    # Fit and predict
    model = LinearRegression(n_iter=n_iter)
    model.fit(X_train, y_train, method)
    y_pred = model.predict(X_test)
    print("-" * 20)

    # Scoring
    model.score(y_test, y_pred)
    print("-" * 20)
    print("True coefs: ", np.insert(m, 0, bias))
    print("Model coefs:", model.beta_hat)
    print("-" * 20)

    # Plotting
    plot_regression_residual(y_test, y_pred, bins=int(len(X_train) / 20))
    if method == 'grad_descent':
        plot_iteration_vs_cost(n_iter, model.cost_h)
Ejemplo n.º 5
0

if __name__ == '__main__':
    np.random.seed(1)

    _input_shape = [60, 41, 2]
    _num_classes = 10
    _num_total = 12500

    _pairs = data_utils.load_data('../data/urbansound8k/pairs')
    _pairs = np.random.choice(_pairs, _num_total, replace=False)

    # Extract features and labels.
    _train_pairs, _, test_pairs = data_utils.split_dataset(
        pairs=_pairs,
        valid_percent=0,
        test_percent=0.2,
        num_classes=_num_classes)

    _labels = np.array(_pairs['label'].tolist())
    _class_weights = [
        _num_total / sum(_labels == i) for i in range(_num_classes)
    ]

    _train_features = np.reshape(_train_pairs['feature'].tolist(),
                                 [-1] + _input_shape)
    _train_labels = to_categorical(_train_pairs['label'].tolist())
    _test_features = np.reshape(test_pairs['feature'].tolist(),
                                [-1] + _input_shape)
    _test_labels = to_categorical(test_pairs['label'].tolist())
Ejemplo n.º 6
0
model_name = args.model
NUM_HIST, NUM_PRED = args.n_hist, args.n_pred
BATCH_SIZE, NUM_EPOCHS, LEARNING_RATE = args.batch_size, args.num_epochs, args.lr

# Reading data
# data = pd.read_csv('data/daily-total-female-births.csv')
raw_data = pd.read_csv('data/mpi_roof.csv',
                       infer_datetime_format=True,
                       parse_dates=['Date Time'])
data = resample_time(raw_data, 'Date Time', '4H')
time_seq = data['T (degC)'].values

# Preparing data, normalise, and train-val-test split
X, y = sliding_windows(time_seq, window=NUM_HIST, overlap=1, num_pred=NUM_PRED)
data_dict, MIN_VAL, MAX_VAL = normalise(
    split_dataset(X, y, test_size=0.2, seed=22))

# Generating dataloaders for modelling
train_loader = generate_dataloader(data_dict['train'][0],
                                   data_dict['train'][1],
                                   batch_size=BATCH_SIZE)
val_loader = generate_dataloader(data_dict['val'][0],
                                 data_dict['val'][1],
                                 batch_size=BATCH_SIZE)
test_loader = generate_dataloader(data_dict['test'][0],
                                  data_dict['test'][1],
                                  batch_size=BATCH_SIZE)

# Setting up model
if model_name == 'ANN':
    model = models.ANN(num_layers=2, num_nodes=[NUM_HIST, 64, 1])
def load_and_split_data(csvfile, x_npy, y_npy, num_folds, word_cnn=False):
    X, Y = du.load_data(csvfile, x_npy, y_npy, word_cnn)
    folds = du.split_dataset(X, Y, num_folds)
    return X, Y, folds
Ejemplo n.º 8
0
    print('Framework type: `%s`' % flags.framework_type)
    print('Framework architecture: `%s`, hist_sel_mode: %s' %
          (framework_creator.__name__, flags.hist_sel_mode))

    tf.set_random_seed(flags.random_seed)
    np.random.seed(flags.random_seed)

    # Load dataset.
    _pairs = data_utils.load_data('data/%s/pairs' % _sub_dir)
    _pairs = np.random.choice(_pairs, _num_total, replace=False)

    # Extract features and labels.
    _train_pairs, _, test_pairs = data_utils.split_dataset(
        pairs=_pairs,
        valid_percent=flags.valid_percent,
        test_percent=flags.test_percent,
        num_classes=flags.num_classes)

    _labels = np.array(_pairs['label'].tolist())
    _class_weights = [
        _num_total / sum(_labels == i) for i in range(_num_classes)
    ]

    _train_features = np.reshape(_train_pairs['feature'].tolist(),
                                 [-1] + _input_shape)
    _train_labels = to_categorical(_train_pairs['label'].tolist())
    _test_features = np.reshape(test_pairs['feature'].tolist(),
                                [-1] + _input_shape)
    _test_labels = to_categorical(test_pairs['label'].tolist())