def generateKMeansDictionary(images, patch_size, num_samples, num_features):
    video_patches, _ = generateVideoPatches(patch_size, images)
    samples = samplePatches(num_samples, video_patches)
    samples = samples.reshape(samples.shape[0], samples.shape[1]**2).T
    X = kmeans(samples, num_features)
    X = X[np.sum(np.abs(X), axis=1) != 0.0]
    X = (X.T / np.linalg.norm(X, axis=1).T).T

    return X.reshape((X.shape[0], patch_size, patch_size))
Ejemplo n.º 2
0
def generatePSDDictionary(images, patch_size, num_samples, num_features):
    # https://cs.nyu.edu/~yann/research/sparse/index.html
    video_patches, _ = generateVideoPatches(patch_size, images)
    samples = samplePatches(num_samples, video_patches)
    samples = samples.reshape(samples.shape[0], samples.shape[1]**2)
    # m > n usually
    n = samples.shape[1]
    m = num_features

    Z = npr.random(size=(m, num_samples))
    B = npr.random(size=(n, m))
    B = (B.T / np.linalg.norm(B, axis=1)).T
    W = npr.random(size=(m, n))
    D = npr.random(size=m)
    G = np.diag(npr.random(size=m))

    Y = samples.T  #n  by num_samples

    lmbda = 1.0
    alpha = 1.0
    lr = 1e-6

    for _ in range(200):
        # keep G,D,W & B constant, minimize wrt Z
        F = np.matmul(G, np.tanh(np.matmul(W, Y).T + D).T)

        for i in range(1000):
            dJ = 2 * np.matmul(B.T, (np.matmul(B, Z) - Y)) + lmbda * np.sum(
                np.sign(Z), axis=0) + 2 * alpha * (Z - F)
            Z = Z - lr * dJ

        i = npr.randint(num_samples)
        z = Z[:, i]
        y = Y[:, i]
        f = np.matmul(G, np.tanh(np.matmul(W, y).T + D).T)
        # one step of stochastic gradient descent on G,D,W & B

        G -= -0.001 * lr * 2 * alpha * np.matmul(G, z - f)
        D -= -lr * 2 * alpha * np.matmul((np.matmul(
            G, (1 - np.power(np.tanh(np.matmul(W, y).T + D).T, 2)))).T, z - f)
        W -= -lr * 2 * alpha * y.T.dot(
            np.matmul(
                np.matmul(
                    G, (1 - np.power(np.tanh(np.matmul(W, y).T + D).T, 2))).T,
                z - f))
        B -= 0.001 * lr * np.outer(np.matmul(B, z) - y, z)

        # print(np.linalg.norm(2*alpha* np.matmul( G.T, z - f)), \
        # 	np.linalg.norm(2*alpha*np.matmul( (np.matmul(G, (1- np.power(np.tanh(np.matmul(W,y).T+D).T, 2)) )).T , z-f)), \
        # 	np.linalg.norm(2*alpha*y.T.dot(np.matmul(np.matmul(G, (1- np.power(np.tanh(np.matmul(W,y).T+D).T, 2)) ).T, z-f))), \
        # 	np.linalg.norm(np.outer(np.matmul(B,z) - y, z)))

        B = (B.T / np.linalg.norm(B, axis=1)).T

    return B.T.reshape((num_features, patch_size, patch_size))
Ejemplo n.º 3
0
def generateKMeansDictionary(images, patch_size, num_samples, num_features):
    video_patches, _ = generateVideoPatches(patch_size, images)
    samples = samplePatches(num_samples, video_patches)
    samples = samples.reshape(samples.shape[0], samples.shape[1]**2)

    kmeans = KMeans(n_clusters=num_features).fit(samples)
    centers = kmeans.cluster_centers_

    centers = (centers.T / np.linalg.norm(centers, axis=1).T).T

    return centers.reshape((num_features, patch_size, patch_size))
Ejemplo n.º 4
0
def generateOptSparseDictionary(images, patch_size, num_samples, num_features):
    video_patches, _ = generateVideoPatches(patch_size, images)
    samples = samplePatches(num_samples, video_patches)
    alg = DictionaryLearning(n_components=num_features)

    # Squeeze sample patches to be array
    alg.fit(samples.reshape(np.shape(samples)[0], np.shape(samples)[1]**2))
    features = alg.components_

    filter_size = np.shape(samples)[1]

    features = (features.T / np.linalg.norm(features, axis=1).T).T
    # features = (features.T - np.mean(features,axis=1).T).T

    features = features.reshape(features.shape[0], filter_size, filter_size)

    return features
Ejemplo n.º 5
0
def generatePCADictionary(images, patch_size, num_samples, num_features):

    video_patches, _ = generateVideoPatches(patch_size, images)
    samples = samplePatches(num_samples, video_patches)

    return computePCA(num_features, samples)