def main(args): # Init TDDFA cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader) gpu_mode = args.mode == 'gpu' tddfa = TDDFA(gpu_mode=gpu_mode, **cfg) # Init FaceBoxes face_boxes = FaceBoxes() # Given a still image path and load to BGR channel img = cv2.imread(args.img_fp) # Detect faces, get 3DMM params and roi boxes boxes = face_boxes(img) n = len(boxes) print(f'Detect {n} faces') if n == 0: print(f'No face detected, exit') sys.exit(-1) param_lst, roi_box_lst = tddfa(img, boxes) # Visualization and serialization dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'ply', 'obj') old_suffix = get_suffix(args.img_fp) new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg' wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' + new_suffix ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag) if args.opt == '2d_sparse': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '2d_dense': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '3d': render(img, ver_lst, alpha=0.6, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'depth': # if `with_bf_flag` is False, the background is black depth(img, ver_lst, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'pncc': pncc(img, ver_lst, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'uv_tex': uv_tex(img, ver_lst, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'pose': viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'ply': ser_to_ply(ver_lst, height=img.shape[0], wfp=wfp) elif args.opt == 'obj': ser_to_obj(img, ver_lst, height=img.shape[0], wfp=wfp) else: raise ValueError(f'Unknown opt {args.opt}')
def main(args): # Init TDDFA cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader) gpu_mode = args.mode == 'gpu' tddfa = TDDFA(gpu_mode=gpu_mode, **cfg) # Init FaceBoxes face_boxes = FaceBoxes() # Given a still image path and load to BGR channel img = cv2.imread(args.img_fp) # Detect faces, get 3DMM params and roi boxes boxes = face_boxes(img) n = len(boxes) print(f'Detect {n} faces') if n == 0: print(f'No face detected, exit') sys.exit(-1) param_lst, roi_box_lst = tddfa(img, boxes) # Visualization and serialization dense_flag = args.opt in ( '2d_dense', '3d', 'depth' ) # if opt is 2d_dense or 3d, reconstruct dense vertices ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag) suffix = get_suffix(args.img_fp) wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(suffix, "")}_{args.opt}.jpg' if args.opt == '2d_sparse': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '2d_dense': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '3d': render(img, ver_lst, alpha=0.6, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'depth': depth(img, ver_lst, show_flag=args.show_flag, wfp=wfp) else: raise Exception(f'Unknown opt {args.opt}')
def main(args): cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader) # Init FaceBoxes and TDDFA, recommend using onnx flag if args.onnx: import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' os.environ['OMP_NUM_THREADS'] = '4' from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX from TDDFA_ONNX import TDDFA_ONNX face_boxes = FaceBoxes_ONNX() tddfa = TDDFA_ONNX(**cfg) else: gpu_mode = args.mode == 'gpu' tddfa = TDDFA(gpu_mode=gpu_mode, **cfg) face_boxes = FaceBoxes() # Given a still image path and load to BGR channel img = cv2.imread(args.img_fp) # Detect faces, get 3DMM params and roi boxes boxes = face_boxes(img) n = len(boxes) if n == 0: print('No face detected, exit') sys.exit(-1) print(f'Detect {n} faces') param_lst, roi_box_lst = tddfa(img, boxes) # Visualization and serialization dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'ply', 'obj') old_suffix = get_suffix(args.img_fp) new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg' wfp = f'{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' +\ new_suffix wfp = base_path / 'examples' / 'results' / wfp ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag) if args.opt == '2d_sparse': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '2d_dense': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '3d': render(img, ver_lst, tddfa.tri, alpha=0.6, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'depth': # if `with_bf_flag` is False, the background is black depth(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'pncc': pncc(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'uv_tex': uv_tex(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'pose': viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'ply': ser_to_ply(ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp) elif args.opt == 'obj': ser_to_obj(img, ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp) else: raise ValueError(f'Unknown opt {args.opt}')
def main(args): cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader) # Init FaceBoxes and TDDFA, recommend using onnx flag if args.onnx: import os os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' os.environ['OMP_NUM_THREADS'] = '4' from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX from TDDFA_ONNX import TDDFA_ONNX face_boxes = FaceBoxes_ONNX() tddfa = TDDFA_ONNX(**cfg) else: gpu_mode = args.mode == 'gpu' tddfa = TDDFA(gpu_mode=gpu_mode, **cfg) face_boxes = FaceBoxes() # Given a still image path and load to BGR channel img = cv2.imread(args.img_fp) # Detect faces, get 3DMM params and roi boxes boxes = face_boxes(img) n = len(boxes) if n == 0: print(f'No face detected, exit') sys.exit(-1) print(f'Detect {n} faces') param_lst, roi_box_lst = tddfa(img, boxes) # Visualization and serialization dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'ply', 'obj') old_suffix = get_suffix(args.img_fp) new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg' wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' + new_suffix ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag) print(ver_lst[0].shape) print(tddfa.bfm.u.shape) lm68 = np.reshape( np.reshape(ver_lst[0].T, (-1, 1))[tddfa.bfm.keypoints], (-1, 3)) print(lm68.shape) for i in range(lm68.shape[0]): lm68[i, 1] = img.shape[0] - lm68[i, 1] for i in range(ver_lst[0].shape[1]): ver_lst[0][1, i] = img.shape[0] - ver_lst[0][1, i] useful_tri = np.copy(tddfa.tri) for i in range(useful_tri.shape[0]): tmp = useful_tri[i, 2] useful_tri[i, 2] = useful_tri[i, 0] useful_tri[i, 0] = tmp useful_tri = useful_tri + 1 np.save("asd_lm.npy", lm68) np.save("asd_v.npy", ver_lst[0].T) np.save("asd_f.npy", useful_tri) if args.opt == '2d_sparse': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '2d_dense': draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp) elif args.opt == '3d': render(img, ver_lst, tddfa.tri, alpha=0.6, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'depth': # if `with_bf_flag` is False, the background is black depth(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'pncc': pncc(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True) elif args.opt == 'uv_tex': uv_tex(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'pose': viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp) elif args.opt == 'ply': ser_to_ply(ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp) elif args.opt == 'obj': ser_to_obj(img, ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp) else: raise ValueError(f'Unknown opt {args.opt}')