def evaluate(hr: torch.tensor, sr: torch.tensor): batch_size, _, h, w = hr.shape psnrs, ssims, msssims = [], [], [] for b in range(batch_size): psnrs.append(get_psnr(hr[b], sr[b])) ssims.append(get_ssim(hr[b].unsqueeze(0), sr[b].unsqueeze(0)).item()) if h > 160 and w > 160: msssim = get_msssim(hr[b].unsqueeze(0), sr[b].unsqueeze(0)).item() else: msssim = 0 msssims.append(msssim) return np.array(psnrs).mean(), np.array(ssims).mean(), np.array(msssims).mean()
for image in tqdm(set5): lr, hr = get_tensor(image) if k == 'Freq_Fusion': lr_high, lr_low = pass_filter(lr) sr, out_img, out_hf, out_lf = model(lr, lr_high, lr_low) elif 'hm' in k: lr_hf = high_pass_filter_hard_kernel(lr) sr, _ = model(lr, lr_hf) else: sr, fea = model(lr) results[image][k] = sr evals['psnr'][image.split('/')[-1]][k] = get_psnr(sr, hr) evals['ssim'][image.split('/')[-1]][k] = get_ssim(sr, hr).item() evals['ms_ssim'][image.split('/')[-1]][k] = get_msssim(sr, hr).item() del model torch.cuda.empty_cache() for meas in ['psnr', 'ssim', 'ms_ssim']: evals[meas]['mean'] = dict() for k in weights.keys(): array = [evals[meas][image.split('/')[-1]][k] for image in set5] evals[meas]['mean'][k] = np.mean(np.array(array)) for image in set5: lr, hr = get_tensor(image) rname = result_dir + image.split('/')[-1] img = [torch.cat((lr, torch.zeros_like(lr)), dim=-2)