Ejemplo n.º 1
0
def run_conditional_estimation(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = GeneratorTorch(seed, cuda=args.cuda)
    train_generator = TrainGenerator(train_generator, cuda=args.cuda)
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)

    # SET MODEL
    logger.info('Set up classifier')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        *config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    result_row.update(
        evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    evaluate_summary_computer(model,
                              X_valid,
                              y_valid,
                              w_valid,
                              n_bins=N_BINS,
                              prefix='valid_',
                              suffix='')
    iter_results = [
        run_conditional_estimation_iter(model,
                                        result_row,
                                        i,
                                        test_config,
                                        valid_generator,
                                        test_generator,
                                        n_bins=N_BINS)
        for i, test_config in enumerate(config.iter_test_config())
    ]

    conditional_estimate = pd.concat(iter_results)
    conditional_estimate['i_cv'] = i_cv
    fname = os.path.join(model.results_path, "conditional_estimations.csv")
    conditional_estimate.to_csv(fname)
    logger.info('DONE')
    return conditional_estimate
Ejemplo n.º 2
0
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = Generator(seed)
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)
    train_generator = TrainGenerator(param_generator, train_generator)

    # SET MODEL
    logger.info('Set up regressor')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        *config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    evaluate_regressor(model, prefix='valid')

    # MEASUREMENT
    result_row['nfcn'] = NCALL
    iter_results = [
        run_iter(model, result_row, i, test_config, valid_generator,
                 test_generator)
        for i, test_config in enumerate(config.iter_test_config())
    ]
    result_table = [e0 for e0, e1 in iter_results]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(model.results_path, 'estimations.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.results_path)

    conditional_estimate = pd.concat([e1 for e0, e1 in iter_results])
    conditional_estimate['i_cv'] = i_cv
    fname = os.path.join(model.results_path, "conditional_estimations.csv")
    conditional_estimate.to_csv(fname)
    logger.info('DONE')
    return result_table, conditional_estimate
Ejemplo n.º 3
0
def main():
    # BASIC SETUP
    logger = set_logger()
    args = REG_parse_args(
        main_description="Training launcher for Regressor on S3D2 benchmark")
    logger.info(args)
    flush(logger)

    # Setup model
    logger.info("Setup model")
    model = build_model(args, 0)
    os.makedirs(model.results_directory, exist_ok=True)

    # Setup data
    logger.info("Setup data")
    config = Config()
    config_table = evaluate_config(config)
    config_table.to_csv(
        os.path.join(model.results_directory, 'config_table.csv'))
    seed = SEED + 99999
    train_generator, valid_generator, test_generator = get_generators_torch(
        seed, cuda=args.cuda, GeneratorClass=GeneratorClass)
    train_generator = GeneratorCPU(train_generator)
    train_generator = TrainGenerator(param_generator, train_generator)
    valid_generator = GeneratorCPU(valid_generator)
    test_generator = GeneratorCPU(test_generator)

    i_cv = 0
    result_row = {'i_cv': i_cv}

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    result_row.update(evaluate_neural_net(model, prefix='valid'))
    evaluate_regressor(model, prefix='valid')
    print_line()

    result_table = [
        run_iter(model, result_row, i, test_config, valid_generator,
                 test_generator)
        for i, test_config in enumerate(config.iter_test_config())
    ]
    result_table = pd.DataFrame(result_table)
    result_table.to_csv(os.path.join(model.results_directory, 'results.csv'))

    logger.info('Plot params')
    param_names = [CALIB_PARAM_NAME]
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.results_directory)

    logger.info('DONE')
Ejemplo n.º 4
0
def run_estimation(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator, valid_generator, test_generator = get_generators_torch(seed, cuda=args.cuda, GeneratorClass=GeneratorClass)
    train_generator = TrainGenerator(train_generator, cuda=args.cuda)
    valid_generator = GeneratorCPU(valid_generator)
    test_generator = GeneratorCPU(test_generator)

    # SET MODEL
    logger.info('Set up classifier')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_neural_net(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(*config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES, no_grad=True)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    result_row.update(evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    calibs = {}
    calibs['tes'] = load_calib_tes(DATA_NAME, BENCHMARK_NAME)
    calibs['jes'] = load_calib_jes(DATA_NAME, BENCHMARK_NAME)
    calibs['les'] = load_calib_les(DATA_NAME, BENCHMARK_NAME)
    evaluate_summary_computer(model, X_valid, y_valid, w_valid, n_bins=N_BINS, prefix='valid_', suffix='')
    iter_results = [run_estimation_iter(model, result_row, i, test_config, valid_generator, test_generator, calibs, n_bins=N_BINS, tolerance=args.tolerance)
                    for i, test_config in enumerate(config.iter_test_config())]
    result_table = pd.DataFrame(iter_results)
    result_table.to_csv(os.path.join(model.results_path, 'estimations.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name, result_table, title=model.full_name, directory=model.results_path)

    logger.info('DONE')
    return result_table
Ejemplo n.º 5
0
def run_estimation(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    config = Config()
    seed = SEED + i_cv * 5
    train_generator = Generator(seed)
    train_generator = TrainGenerator(param_generator, train_generator)
    valid_generator = Generator(seed + 1)
    test_generator = Generator(seed + 2)

    # SET MODEL
    logger.info('Set up classifier')
    model = build_model(args, i_cv)
    os.makedirs(model.results_path, exist_ok=True)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_data_augmentation(model,
                                    train_generator,
                                    config.N_TRAINING_SAMPLES * N_AUGMENT,
                                    retrain=args.retrain)

    # CHECK TRAINING
    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        *config.CALIBRATED, n_samples=config.N_VALIDATION_SAMPLES)

    result_row.update(evaluate_neural_net(model, prefix='valid'))
    result_row.update(
        evaluate_classifier(model, X_valid, y_valid, w_valid, prefix='valid'))

    # MEASUREMENT
    evaluate_summary_computer(model,
                              X_valid,
                              y_valid,
                              w_valid,
                              n_bins=N_BINS,
                              prefix='valid_',
                              suffix='')
    iter_results = [
        run_estimation_iter(model,
                            result_row,
                            i,
                            test_config,
                            valid_generator,
                            test_generator,
                            n_bins=N_BINS)
        for i, test_config in enumerate(config.iter_test_config())
    ]
    result_table = pd.DataFrame(iter_results)
    result_table.to_csv(os.path.join(model.results_path, 'estimations.csv'))
    logger.info('Plot params')
    param_names = config.PARAM_NAMES
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.results_path)

    logger.info('DONE')
    return result_table
Ejemplo n.º 6
0
def run(args, i_cv):
    logger = logging.getLogger()
    print_line()
    logger.info('Running iter n°{}'.format(i_cv))
    print_line()

    result_row = {'i_cv': i_cv}
    result_table = []

    # LOAD/GENERATE DATA
    logger.info('Set up data generator')
    pb_config = Config()
    seed = config.SEED + i_cv * 5
    train_generator = Synthetic3DGeneratorTorch(seed)
    valid_generator = S3D2(seed + 1)
    test_generator = S3D2(seed + 2)

    # SET MODEL
    logger.info('Set up inferno')
    model = build_model(args, i_cv)
    flush(logger)

    # TRAINING / LOADING
    train_or_load_inferno(model, train_generator, retrain=args.retrain)

    # CHECK TRAINING
    result_row.update(evaluate_neural_net(model))

    logger.info('Generate validation data')
    X_valid, y_valid, w_valid = valid_generator.generate(
        pb_config.CALIBRATED_R,
        pb_config.CALIBRATED_LAMBDA,
        pb_config.CALIBRATED_MU,
        n_samples=pb_config.N_VALIDATION_SAMPLES)

    # MEASUREMENT
    N_BINS = args.n_bins
    compute_summaries = model.compute_summaries
    for mu in pb_config.TRUE_MU_RANGE:
        true_params = Parameter(pb_config.TRUE.r, pb_config.TRUE.lam, mu)
        suffix = f'-mu={true_params.mu:1.2f}_r={true_params.r}_lambda={true_params.lam}'
        logger.info('Generate testing data')
        X_test, y_test, w_test = test_generator.generate(
            *true_params, n_samples=pb_config.N_TESTING_SAMPLES)
        # PLOT SUMMARIES
        evaluate_summary_computer(model,
                                  X_valid,
                                  y_valid,
                                  w_valid,
                                  X_test,
                                  w_test,
                                  n_bins=N_BINS,
                                  prefix='',
                                  suffix=suffix)

        logger.info('Set up NLL computer')
        compute_nll = S3D2NLL(compute_summaries, valid_generator, X_test,
                              w_test)
        # NLL PLOTS
        plot_nll_around_min(compute_nll, true_params, model.path, suffix)

        # MINIMIZE NLL
        logger.info('Prepare minuit minimizer')
        minimizer = get_minimizer(compute_nll, pb_config.CALIBRATED,
                                  pb_config.CALIBRATED_ERROR)
        fmin, params = estimate(minimizer)
        result_row.update(evaluate_minuit(minimizer, fmin, params,
                                          true_params))

        result_table.append(result_row.copy())
    result_table = pd.DataFrame(result_table)

    logger.info('Plot params')
    param_names = pb_config.PARAM_NAMES
    for name in param_names:
        plot_params(name,
                    result_table,
                    title=model.full_name,
                    directory=model.path)

    logger.info('DONE')
    return result_table