Ejemplo n.º 1
0
    def validation(self, net, val_loader_in, val_loader_out):
        net.eval()
        device = list(net.parameters())[0].device

        unc_in, unc_out = [], []
        n_samples, running_loss, running_corrects = 0, 0, 0
        for (X_batch_in, y_batch_in), (X_batch_out, y_batch_out) in zip(val_loader_in, val_loader_out):
            X_batch_in, y_batch_in = X_batch_in.to(device), y_batch_in.to(device)
            X_batch_out, y_batch_out = X_batch_out.to(device), y_batch_out.to(device)

            with torch.no_grad():
                logits_in = net(X_batch_in)
                logits_out = net(X_batch_out)
                proba_in = F.softmax(logits_in, -1)
                proba_out = F.softmax(logits_out, -1)

            loss = F.cross_entropy(logits_in, y_batch_in)
            unc_in.append(-proba_in.max(-1)[0])
            unc_out.append(-proba_out.max(-1)[0])

            batch_size = X_batch_in.size(0)
            n_samples += batch_size
            running_loss += loss * batch_size
            running_corrects += (logits_in.argmax(-1) == y_batch_in).float().sum()
        unc_in = torch.cat(unc_in).cpu()
        unc_out = torch.cat(unc_out).cpu()

        val_loss = running_loss / n_samples
        val_acc = running_corrects / n_samples

        # results = self.score(val_loader_in, val_loader_out)
        # Logging
        self.history['val_loss'].append(val_loss.item())
        self.history['val_acc'].append(val_acc.item())
        self.history['val_auroc'].append(evaluation.get_AUROC_ood(unc_in, unc_out))
Ejemplo n.º 2
0
Archivo: edl.py Proyecto: hsljc/ae-dnn
    def validation(self, val_loader_in, val_loader_out, i_epoch):
        device = list(self.net.parameters())[0].device
        self.net.eval()
        unc_in, unc_out = [], []
        n_samples, running_loss, running_corrects = 0, 0, 0
        for (X_batch_in, y_batch_in), (X_batch_out, y_batch_out) in zip(val_loader_in, val_loader_out):
            X_batch_in, y_batch_in = X_batch_in.to(device), y_batch_in.to(device)
            X_batch_out, y_batch_out = X_batch_out.to(device), y_batch_out.to(device)

            with torch.no_grad():
                logits_in = self.net(X_batch_in)
                logits_out = self.net(X_batch_out)
            loss = self._edl_loss(exp_evidence(logits_in), y_batch_in, epoch=i_epoch)

            unc_in.append(self.get_unc(logits_in))
            unc_out.append(self.get_unc(logits_out))

            batch_size = X_batch_in.size(0)
            n_samples += batch_size
            running_loss += loss * batch_size
            running_corrects += (logits_in.argmax(-1) == y_batch_in).float().sum()
        val_loss = running_loss / n_samples
        val_acc = running_corrects / n_samples

        unc_in = torch.cat(unc_in).cpu()
        unc_out = torch.cat(unc_out).cpu()

        # Logging
        self.history['val_loss'].append(val_loss.item())
        self.history['val_acc'].append(val_acc.item())
        self.history['val_auroc'].append(evaluation.get_AUROC_ood(unc_in, unc_out))
Ejemplo n.º 3
0
    def score(self, dataloader_in, dataloader_out):
        device = list(self.net.parameters())[0].device

        probas_in = []
        y_in = []
        for X_batch, y_batch in dataloader_in:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                probas_in.append(self(X_batch))
            y_in.append(y_batch)
        probas_in = torch.cat(probas_in).cpu()
        y_in = torch.cat(y_in).cpu()

        probas_out = []
        for X_batch, y_batch in dataloader_out:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                probas_out.append(self(X_batch))
        probas_out = torch.cat(probas_out).cpu()

        probas_in = probas_in.clamp(1e-8, 1-1e-8)
        probas_out = probas_out.clamp(1e-8, 1-1e-8)

        # Accuracy
        acc = (y_in == probas_in.argmax(-1)).float().mean().item()

        # Calibration Metrics
        criterion_ece = evaluation.ExpectedCalibrationError()
        criterion_nll = evaluation.NegativeLogLikelihood()
        criterion_bs = evaluation.BrierScore()
        criterion_cc = evaluation.CalibrationCurve()

        ece = criterion_ece(probas_in, y_in)
        nll = criterion_nll(probas_in, y_in)
        brier_score = criterion_bs(probas_in, y_in)
        calibration_curve = criterion_cc(probas_in, y_in)

        # OOD metrics
        # entropy_in = -torch.sum(probas_in * probas_in.log(), dim=-1)
        # entropy_out = -torch.sum(probas_out * probas_out.log(), dim=-1)

        unc_in, unc_out = -probas_in.max(1)[0], -probas_out.max(1)[0]
        auroc = evaluation.get_AUROC_ood(unc_in, unc_out)

        results = {
            'accuracy': acc,
            # Calibration
            'ece': ece,
            'nll': nll,
            'brier_score': brier_score,
            'calibration_curve': calibration_curve,
            # OOD
            'auroc': auroc,
            'unc_in': unc_in,
            'unc_out': unc_out,
        }
        return results
Ejemplo n.º 4
0
Archivo: xedl.py Proyecto: hsljc/ae-dnn
    def validation(self, val_loader_in, val_loader_out):
        self.net.eval()

        (preds, unc_in), lbls = evaluation.eval_on_dataloader(
            self.net,
            val_loader_in, (lambda x: x.argmax(-1), self.get_unc),
            return_labels=True)
        unc_out = evaluation.eval_on_dataloader(self.net, val_loader_out,
                                                self.get_unc)

        self.history['val_acc'].append((preds == lbls).float().mean(0).item())
        self.history['val_auroc'].append(
            evaluation.get_AUROC_ood(unc_in, unc_out))
Ejemplo n.º 5
0
    def validation(self, val_loader_in, val_loader_out):
        # Evaluation
        device = list(self.net.parameters())[0].device
        self.net.eval()
        n_samples, running_loss, running_corrects = 0, 0, 0
        unc_in, unc_out = [], []
        for (X_batch, y_batch), (X_ood, _) in zip(val_loader_in,
                                                  val_loader_out):
            X_batch, y_batch, X_ood = X_batch.to(device), y_batch.to(
                device), X_ood.to(device)

            with torch.no_grad():
                logits_in = self.net(X_batch)
                logits_out = self.net(X_ood)

            alphas_in = torch.exp(logits_in)
            target_in = torch.zeros_like(alphas_in).scatter_(
                1, y_batch[:, None], self.precision - 1) + 1
            loss_in = torch.mean(
                dirichlet_reverse_kl_divergence(alphas_in, target_in))

            alphas_out = torch.exp(logits_out)
            target_out = torch.ones_like(alphas_out)
            loss_out = torch.mean(
                dirichlet_reverse_kl_divergence(alphas_out, target_out))

            unc_in.append(
                dirichlet_prior_network_uncertainty(logits_in)
                ['mutual_information'])
            unc_out.append(
                dirichlet_prior_network_uncertainty(logits_out)
                ['mutual_information'])

            loss = loss_in + self.gamma * loss_out

            batch_size = X_batch.size(0)
            n_samples += batch_size
            running_loss += loss * batch_size
            running_corrects += (alphas_in.argmax(-1) == y_batch).float().sum()
        val_loss = running_loss / n_samples
        val_acc = running_corrects / n_samples
        unc_in = torch.cat(unc_in).cpu()
        unc_out = torch.cat(unc_out).cpu()

        # Logging
        self.history['val_loss'].append(val_loss.item())
        self.history['val_acc'].append(val_acc.item())
        self.history['val_auroc'].append(
            evaluation.get_AUROC_ood(unc_in, unc_out))
Ejemplo n.º 6
0
    def validation(self, val_loader_in, val_loader_out):
        self.net.eval()
        device = list(self.net.parameters())[0].device
        # EvaluatOOion
        n_samples, running_loss, running_corrects = 0, 0, 0
        proba_in, proba_out = [], []
        for (X_batch_in, y_batch_in), (X_batch_out, y_batch_out) in zip(val_loader_in, val_loader_out):
            X_batch_in, y_batch_in = X_batch_in.to(device), y_batch_in.to(device)
            X_batch_out, y_batch_out = X_batch_out.to(device), y_batch_out.to(device)

            with torch.no_grad():
                mean_in, logvar_in = self.net(X_batch_in)

                proba_in.append(self.predic_proba(X_batch_in).clamp(1e-8, 1-1e-8))
                proba_out.append(self.predic_proba(X_batch_out).clamp(1e-8, 1-1e-8))

            std_in = torch.exp(.5*logvar_in)

            loss = 0
            for _ in range(2):
                x_hat = mean_in + torch.randn_like(mean_in) * std_in
                # Eq. 12
                loss += torch.exp(
                    x_hat.gather(1, y_batch_in.view(-1, 1)) -
                    torch.log(torch.sum(torch.exp(x_hat), dim=-1, keepdim=True))
                )
            loss = torch.log(loss / 2)
            loss = - torch.sum(loss)

            batch_size = X_batch_in.size(0)
            n_samples += batch_size
            running_loss += loss
            running_corrects += (mean_in.argmax(-1) == y_batch_in).float().sum()

        proba_in = torch.cat(proba_in).cpu()
        proba_out = torch.cat(proba_out).cpu()
        unc_in = - torch.sum(proba_in * proba_in.log(), -1)
        unc_out = - torch.sum(proba_out * proba_out.log(), -1)

        val_loss = running_loss / n_samples
        val_acc = running_corrects / n_samples

        # Logging
        self.history['val_loss'].append(val_loss.item())
        self.history['val_acc'].append(val_acc.item())
        self.history['val_auroc'].append(evaluation.get_AUROC_ood(unc_in, unc_out))
Ejemplo n.º 7
0
Archivo: xedl.py Proyecto: hsljc/ae-dnn
    def score(self, dataloader_in, dataloader_out):
        self.eval()
        device = list(self.net.parameters())[0].device

        logits_in = []
        probas_in = []
        y_in = []
        for X_batch, y_batch in dataloader_in:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                logits_in.append(self.net(X_batch))
            a = self.evidence_func(logits_in[-1]) + self.prior
            proba = a / a.sum(-1, keepdim=True)
            probas_in.append(proba)
            y_in.append(y_batch)
        logits_in = torch.cat(logits_in).cpu()
        probas_in = torch.cat(probas_in).cpu()
        y_in = torch.cat(y_in).cpu()

        logits_out = []
        probas_out = []
        for X_batch, y_batch in dataloader_out:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                logits_out.append(self.net(X_batch))
            a = self.evidence_func(logits_in[-1]) + self.prior
            proba = a / a.sum(-1, keepdim=True)
            probas_out.append(proba)
        logits_out = torch.cat(logits_out).cpu()
        probas_out = torch.cat(probas_out).cpu()

        probas_in = probas_in.clamp(1e-8, 1 - 1e-8)
        probas_out = probas_out.clamp(1e-8, 1 - 1e-8)

        # Accuracy
        acc = (y_in == probas_in.argmax(-1)).float().mean().item()

        # Calibration Metrics
        criterion_ece = evaluation.ExpectedCalibrationError()
        criterion_nll = evaluation.NegativeLogLikelihood()
        criterion_bs = evaluation.BrierScore()
        criterion_cc = evaluation.CalibrationCurve()

        ece = criterion_ece(probas_in, y_in)
        nll = criterion_nll(probas_in, y_in)
        brier_score = criterion_bs(probas_in, y_in)
        calibration_curve = criterion_cc(probas_in, y_in)

        # OOD metrics
        entropy_in = -torch.sum(probas_in * probas_in.log(), dim=-1)
        entropy_out = -torch.sum(probas_out * probas_out.log(), dim=-1)
        unc_in, unc_out = self.get_unc(logits_in), self.get_unc(logits_out)
        auroc = evaluation.get_AUROC_ood(unc_in, unc_out)

        results = {
            'accuracy': acc,
            # Calibration
            'ece': ece,
            'nll': nll,
            'brier_score': brier_score,
            'calibration_curve': calibration_curve,
            # OOD
            'auroc': auroc,
            'entropy_in': entropy_in,
            'entropy_out': entropy_out,
            'unc_in': unc_in,
            'unc_out': unc_out,
        }
        self.train()
        return results
Ejemplo n.º 8
0
    def score(self, dataloader_in, dataloader_out):
        self.eval()
        device = list(self.net.parameters())[0].device

        logits_in, y_in = [], []
        for X_batch, y_batch in dataloader_in:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                logits_in.append(self.net(X_batch))
                y_in.append(y_batch)
        logits_in = torch.cat(logits_in).cpu()
        y_in = torch.cat(y_in).cpu()
        alphas_in = torch.exp(logits_in)
        probas_in = alphas_in / alphas_in.sum(-1, keepdim=True)

        logits_out, y_out = [], []
        for X_batch, y_batch in dataloader_out:
            X_batch, y_batch = X_batch.to(device), y_batch.to(device)
            with torch.no_grad():
                logits_out.append(self.net(X_batch))
                y_out.append(y_batch)
        logits_out = torch.cat(logits_out).cpu()
        y_out = torch.cat(y_out).cpu()
        alphas_out = torch.exp(logits_out)
        probas_out = alphas_out / alphas_out.sum(-1, keepdim=True)

        uncertainty_in = dirichlet_prior_network_uncertainty(logits_in)
        uncertainty_out = dirichlet_prior_network_uncertainty(logits_out)

        probas_in = probas_in.clamp(1e-8, 1 - 1e-8)
        probas_out = probas_out.clamp(1e-8, 1 - 1e-8)

        # Accuracy
        acc = (y_in == probas_in.argmax(-1)).float().mean().item()

        # Calibration Metrics
        criterion_ece = evaluation.ExpectedCalibrationError()
        criterion_nll = evaluation.NegativeLogLikelihood()
        criterion_bs = evaluation.BrierScore()
        criterion_cc = evaluation.CalibrationCurve()

        ece = criterion_ece(probas_in, y_in)
        nll = criterion_nll(probas_in, y_in)
        brier_score = criterion_bs(probas_in, y_in)
        calibration_curve = criterion_cc(probas_in, y_in)

        # OOD metrics
        unc_in, unc_out = uncertainty_in[
            'mutual_information'], uncertainty_out['mutual_information']
        auroc = evaluation.get_AUROC_ood(unc_in, unc_out)
        entropy_in = uncertainty_in['entropy_of_expected']
        entropy_out = uncertainty_out['entropy_of_expected']

        self.train()
        results = {
            'accuracy': acc,
            # Calibration
            'ece': ece,
            'nll': nll,
            'brier_score': brier_score,
            'calibration_curve': calibration_curve,
            # OOD
            'auroc': auroc,
            'entropy_in': entropy_in,
            'entropy_out': entropy_out,
            'unc_in': unc_in,
            'unc_out': unc_out,
        }
        return results