Ejemplo n.º 1
0
def get_short_quiet_paths(graph, from_latLon, to_latLon, logging=False):
    from_xy = geom_utils.get_xy_from_lat_lon(from_latLon)
    to_xy = geom_utils.get_xy_from_lat_lon(to_latLon)
    # find origin and destination nodes from closest edges
    orig_node = rt.get_nearest_node(graph, from_xy, edge_gdf, node_gdf, nts=nts, db_costs=db_costs, logging=logging)
    dest_node = rt.get_nearest_node(graph, to_xy, edge_gdf, node_gdf, nts=nts, db_costs=db_costs, logging=logging, orig_node=orig_node)
    # utils.print_duration(start_time, 'Origin & destination nodes set.')
    # start_time = time.time()
    # get shortest path
    path_list = []
    shortest_path = rt.get_shortest_path(graph, orig_node['node'], dest_node['node'], weight='length')
    path_geom_noises = nw.aggregate_path_geoms_attrs(graph, shortest_path, weight='length', noises=True)
    path_list.append({**path_geom_noises, **{'id': 'short_p','type': 'short', 'nt': 0}})
    # get quiet paths to list
    for nt in nts:
        noise_cost_attr = 'nc_'+str(nt)
        shortest_path = rt.get_shortest_path(graph, orig_node['node'], dest_node['node'], weight=noise_cost_attr)
        path_geom_noises = nw.aggregate_path_geoms_attrs(graph, shortest_path, weight=noise_cost_attr, noises=True)
        path_list.append({**path_geom_noises, **{'id': 'q_'+str(nt), 'type': 'quiet', 'nt': nt}})
    # remove linking edges of the origin / destination nodes
    nw.remove_new_node_and_link_edges(graph, orig_node)
    nw.remove_new_node_and_link_edges(graph, dest_node)
    # collect quiet paths to gdf
    paths_gdf = gpd.GeoDataFrame(path_list, crs=from_epsg(3879))
    paths_gdf = paths_gdf.drop_duplicates(subset=['type', 'total_length']).sort_values(by=['type', 'total_length'], ascending=[False, True])
    # add exposures to noise levels higher than specified threshods (dBs)
    paths_gdf['th_noises'] = [exps.get_th_exposures(noises, [55, 60, 65, 70]) for noises in paths_gdf['noises']]
    # add percentages of cumulative distances of different noise levels
    paths_gdf['noise_pcts'] = paths_gdf.apply(lambda row: exps.get_noise_pcts(row['noises'], row['total_length']), axis=1)
    # add noise exposure index (same as noise cost with noise tolerance: 1)
    paths_gdf['nei'] = [round(exps.get_noise_cost(noises=noises, db_costs=db_costs), 1) for noises in paths_gdf['noises']]
    paths_gdf['nei_norm'] = paths_gdf.apply(lambda row: exps.get_nei_norm(row.nei, row.total_length, db_costs), axis=1)
    return paths_gdf
Ejemplo n.º 2
0
def set_graph_noise_costs(graph, edge_gdf, db_costs=None, nts=None):
    edge_nc_gdf = edge_gdf.copy()
    for nt in nts:
        edge_nc_gdf['noise_cost'] = [
            exps.get_noise_cost(noises=noises, db_costs=db_costs, nt=nt)
            for noises in edge_nc_gdf['noises']
        ]
        edge_nc_gdf['tot_cost'] = edge_nc_gdf.apply(
            lambda row: round(row['length'] + row['noise_cost'], 2), axis=1)
        update_edge_costs_to_graph(edge_nc_gdf, graph, nt)
Ejemplo n.º 3
0
def get_short_quiet_paths(graph, from_latLon, to_latLon, edge_gdf, node_gdf, nts=[], db_costs={}, remove_geom_prop=False, only_short=False, logging=True):
    # get origin & destination nodes
    from_xy = geom_utils.get_xy_from_lat_lon(from_latLon)
    to_xy = geom_utils.get_xy_from_lat_lon(to_latLon)
    # find/create origin and destination nodes
    orig_node = get_nearest_node(graph, from_xy, edge_gdf, node_gdf, nts=nts, db_costs=db_costs)
    dest_node = get_nearest_node(graph, to_xy, edge_gdf, node_gdf, nts=nts, db_costs=db_costs, orig_node=orig_node)
    if (orig_node is None):
        print('could not find origin node at', from_latLon)
        return None
    if (dest_node is None):
        print('could not find destination node at', to_latLon)
        return None
    # get shortest path
    path_list = []
    shortest_path = get_shortest_path(graph, orig_node['node'], dest_node['node'], weight='length')
    if (shortest_path is None):
        print('could not find shortest path')
        return None
    if (only_short == True):
        return shortest_path
    path_geom_noises = nw.aggregate_path_geoms_attrs(graph, shortest_path, weight='length', noises=True)
    path_list.append({**path_geom_noises, **{'id': 'short_p','type': 'short', 'nt': 0}})
    # get quiet paths to list
    for nt in nts:
        noise_cost_attr = 'nc_'+str(nt)
        quiet_path = get_shortest_path(graph, orig_node['node'], dest_node['node'], weight=noise_cost_attr)
        path_geom_noises = nw.aggregate_path_geoms_attrs(graph, quiet_path, weight=noise_cost_attr, noises=True)
        path_list.append({**path_geom_noises, **{'id': 'q_'+str(nt), 'type': 'quiet', 'nt': nt}})
    # remove linking edges of the origin / destination nodes
    nw.remove_new_node_and_link_edges(graph, orig_node)
    nw.remove_new_node_and_link_edges(graph, dest_node)
    # collect quiet paths to gdf
    paths_gdf = gpd.GeoDataFrame(path_list, crs=from_epsg(3879))
    paths_gdf = paths_gdf.drop_duplicates(subset=['type', 'total_length']).sort_values(by=['type', 'total_length'], ascending=[False, True])
    # add exposures to noise levels higher than specified threshods (dBs)
    paths_gdf['th_noises'] = [exps.get_th_exposures(noises, [55, 60, 65, 70]) for noises in paths_gdf['noises']]
    # add percentages of cumulative distances of different noise levels
    paths_gdf['noise_pcts'] = paths_gdf.apply(lambda row: exps.get_noise_pcts(row['noises'], row['total_length']), axis=1)
    # calculate mean noise level
    paths_gdf['mdB'] = paths_gdf.apply(lambda row: exps.get_mean_noise_level(row['noises'], row['total_length']), axis=1)
    # calculate noise exposure index (same as noise cost but without noise tolerance coefficient)
    paths_gdf['nei'] = [round(exps.get_noise_cost(noises=noises, db_costs=db_costs), 1) for noises in paths_gdf['noises']]
    paths_gdf['nei_norm'] = paths_gdf.apply(lambda row: exps.get_nei_norm(row.nei, row.total_length, db_costs), axis=1)
    # gdf to dicts
    path_dicts = qp.get_geojson_from_q_path_gdf(paths_gdf)
    # group paths with nearly identical geometries
    unique_paths = qp.remove_duplicate_geom_paths(path_dicts, tolerance=30, remove_geom_prop=remove_geom_prop, logging=False)
    # calculate exposure differences to shortest path
    path_comps = get_short_quiet_paths_comparison_for_dicts(unique_paths)
    # return paths as GeoJSON (FeatureCollection)...
    return { 'paths': path_comps, 'shortest_path': shortest_path, 'orig_offset': orig_node['offset'], 'dest_offset': dest_node['offset'] }
Ejemplo n.º 4
0
def get_edge_noise_cost_attrs(nts, db_costs, edge_d, link_geom):
    cost_attrs = {}
    # estimate link noises based on link length - edge length -ratio and edge noises
    cost_attrs['noises'] = interpolate_link_noises(link_geom,
                                                   edge_d['geometry'],
                                                   edge_d['noises'])
    # calculate noise tolerance specific noise costs
    for nt in nts:
        noise_cost = exps.get_noise_cost(noises=cost_attrs['noises'],
                                         db_costs=db_costs,
                                         nt=nt)
        cost_attrs['nc_' + str(nt)] = round(noise_cost + link_geom.length, 2)
    noises_sum_len = exps.get_total_noises_len(cost_attrs['noises'])
    if ((noises_sum_len - link_geom.length) > 0.1):
        print('link length unmatch:', noises_sum_len, link_geom.length)
    return cost_attrs
Ejemplo n.º 5
0
#%% merge edge utils to edge gdf
print('edge utils rows:', len(edge_utils_df))
print('edge gdf rows:', len(edges_subset))
edge_utils_gdf = pd.merge(edges_subset,
                          edge_utils_df,
                          how='left',
                          on='edge_id')
print('merged rows:', len(edge_utils_gdf))
# edge_utils_gdf.head()

#%% add noise indexes to edge utils gdf
edge_utils_gdf['mdB'] = edge_utils_gdf.apply(
    lambda row: exps.get_mean_noise_level(row['noises'], row['length']),
    axis=1)
edge_utils_gdf['nei'] = [
    round(exps.get_noise_cost(noises=noises, db_costs=db_costs), 1)
    for noises in edge_utils_gdf['noises']
]
edge_utils_gdf['nei_norm'] = edge_utils_gdf.apply(
    lambda row: exps.get_nei_norm(row.nei, row.total_length, db_costs), axis=1)

#%% export edges with noise & util attributes to file
edge_utils_gdf_file = edge_utils_gdf.drop(
    columns=['uvkey', 'noises', 'edge_id'])
# edge_utils_gdf_file = edge_utils_gdf_file.query('util > 0')
edge_utils_gdf_file.to_file('outputs/YKR_commutes_output/edge_stats.gpkg',
                            layer=edges_out_file,
                            driver='GPKG')
print('exported file:', edges_out_file)

#### READ & ANALYSE STREET STATS ####