def test(self, test_dataset):

        mean_f1_score, mean_precision, mean_recall, mean_distance_precision, mean_theta_regression = 0, 0, 0, 0, 0
        num_data_points = 0
        num_distance_theta_cases = 0

        for data_point_ix, data_point in enumerate(test_dataset):

            image, visible_objects = data_point

            # Compute probabilities over list of visible objects
            log_prob_landmark, log_prob_distance, log_prob_theta = self.model.get_probs(
                [[image]])

            prob_landmark = list(torch.exp(log_prob_landmark.data)[0])
            prob_distance = list(torch.exp(log_prob_distance.data)[0])
            prob_theta = list(torch.exp(log_prob_theta.data)[0])

            predicted_set = dict()
            for i in range(0, 63):
                argmax_val = gp.get_argmax_action(prob_landmark[i])
                if argmax_val == 1:
                    # predicted the distance and angle
                    argmax_landmark_val = gp.get_argmax_action(
                        prob_distance[i])
                    argmax_theta_val = gp.get_argmax_action(prob_theta[i])
                    predicted_set[i] = (argmax_landmark_val, argmax_theta_val)

            f1_score, precision, recall, distance_precision, theta_regression, num_distance_theta_cases_ = \
                SupervisedLearningDetectSymbolicEnvironment.get_f1_score(visible_objects, predicted_set)
            # self.update_confusion_matrix(visible_objects, predicted_set)
            mean_f1_score += f1_score
            mean_precision += precision
            mean_recall += recall
            num_data_points += 1
            mean_distance_precision += distance_precision
            mean_theta_regression += theta_regression
            num_distance_theta_cases += num_distance_theta_cases_

        mean_f1_score /= float(max(num_data_points, 1))
        mean_precision /= float(max(num_data_points, 1))
        mean_recall /= float(max(num_data_points, 1))
        mean_distance_precision /= float(max(num_distance_theta_cases, 1))
        mean_theta_regression /= float(max(num_distance_theta_cases, 1))

        logging.info(
            "Object detection accuracy on a dataset of size %r the mean f1 score is %r, precision %r, recall %r",
            num_data_points, mean_f1_score, mean_precision, mean_recall)
        logging.info(
            "Object location accuracy on %r cases the mean distance precision is %r and theta regression is %r angle",
            num_distance_theta_cases, mean_distance_precision,
            mean_theta_regression * 7.5)
Ejemplo n.º 2
0
    def test1(self, test_dataset, test_real_dataset):

        num_data_points = 0
        num_used_landmarks = 0
        theta_accuracy = 0
        neighbouring_accuracy = 0
        symbolic_landmark_accuracy = 0

        for data_point_ix, data_point in enumerate(test_dataset):

            image, visible_objects = data_point

            # Compute probabilities over list of visible objects
            log_prob_theta = self.model.get_probs([[image]])
            prob_theta = list(torch.exp(log_prob_theta.data)[0])

            data_point_real = test_real_dataset[data_point_ix]
            gold_landmark, gold_theta_1, gold_theta_2, gold_r = \
                nav_drone_symbolic_instructions.get_nav_drone_symbolic_instruction_segment(data_point_real)
            gold_theta_1_corrected = (gold_theta_1 + 6) % 12
            if gold_theta_1_corrected == gp.get_argmax_action(
                    prob_theta[gold_landmark]):
                symbolic_landmark_accuracy += 1

            for i in range(0, self.num_landmark):
                if i in visible_objects:
                    # predicted the distance and angle
                    argmax_theta_val = gp.get_argmax_action(prob_theta[i])
                    gold_angle = visible_objects[i][1]
                    if argmax_theta_val == gold_angle:
                        theta_accuracy += 1
                    angle_diff = min((argmax_theta_val - gold_angle) % 12,
                                     (gold_angle - argmax_theta_val) % 12)
                    if angle_diff <= 1:
                        neighbouring_accuracy += 1
                    num_used_landmarks += 1

            num_data_points += 1

        theta_accuracy /= float(max(num_used_landmarks, 1))
        neighbouring_accuracy /= float(max(num_used_landmarks, 1))
        symbolic_landmark_accuracy /= float(max(len(test_real_dataset), 1))

        logging.info(
            "Num datapoints %r, num visible landmarks %r and mean theta accuracy %r and neigbhouring accuracy %r",
            num_data_points, num_used_landmarks, theta_accuracy,
            neighbouring_accuracy)
        logging.info("Accuracy for landmark mentioned in the text is %r",
                     symbolic_landmark_accuracy)
        return theta_accuracy
Ejemplo n.º 3
0
    def predict_action(self, batch_replay_items):

        if len(batch_replay_items) <= 1:
            return None

        num_items = len(batch_replay_items)
        action_batch = []
        batch_input = []

        for replay_item in batch_replay_items:
            next_image_emb = replay_item.get_next_image_emb()
            if next_image_emb is None:  # sometimes it can None for the last item in a rollout
                continue
            action_batch.append(replay_item.get_action())
            image_emb = replay_item.get_image_emb()
            x = torch.cat([image_emb, next_image_emb], 2)
            batch_input.append(x)

        batch_input = torch.cat(batch_input)
        model_log_prob_batch = self.model.action_prediction_log_prob(
            batch_input)

        log_prob = list(model_log_prob_batch.data)
        for i in range(0, num_items - 1):
            predicted_action = gp.get_argmax_action(log_prob[i])
            if action_batch[i] != predicted_action:
                self.wrong[action_batch[i]] += 1
            else:
                self.correct[action_batch[i]] += 1
            logging.info("Was %r and predicted %r, wrong %r, correct %r",
                         action_batch[i], predicted_action, self.wrong,
                         self.correct)
Ejemplo n.º 4
0
    def predict_angle_from_resnet(self, test_dataset, test_images):

        angle_accuracy = 0
        for data_point_ix, data_point in enumerate(test_dataset):

            gold_landmark, gold_theta_1, gold_theta_2, gold_r = \
                nav_drone_symbolic_instructions.get_nav_drone_symbolic_instruction_segment(data_point)

            # Compute probabilities over list of visible objects
            log_prob_landmark, log_prob_distance, log_prob_theta = self.resnet_detection_model.get_probs(
                [[test_images[data_point_ix]]])

            prob_landmark = list(torch.exp(log_prob_landmark.data)[0])
            prob_distance = list(torch.exp(log_prob_distance.data)[0])
            prob_theta = list(torch.exp(log_prob_theta.data)[0])

            # Find the angle of the gold landmark and compare
            if gold_landmark < 63 and gold_theta_1 < 4.0:
                print "GOLD LANDMARK is " + str(gold_landmark)
                argmax_theta_val = gp.get_argmax_action(prob_theta[gold_landmark])
                print "ARGMAX THETA VAL " + str(argmax_theta_val) + " and " + str(gold_theta_1)
                if argmax_theta_val == gold_theta_1:
                    angle_accuracy += 1

        angle_accuracy = (angle_accuracy * 100.0)/float(len(test_dataset))
        logging.info("Angle accuracy of gold landmark is %r", angle_accuracy)
Ejemplo n.º 5
0
    def test(self, test_dataset):

        num_data_points = 0
        num_used_landmarks = 0
        theta_accuracy = 0
        neighbouring_accuracy = 0

        for data_point_ix, data_point in enumerate(test_dataset):

            image, visible_objects = data_point

            # Compute probabilities over list of visible objects
            log_prob_theta = self.model.get_probs([[image]])

            prob_theta = list(torch.exp(log_prob_theta.data)[0])
            for i in range(0, self.num_landmark):
                if i in visible_objects:
                    # predicted the distance and angle
                    argmax_theta_val = gp.get_argmax_action(prob_theta[i])
                    gold_angle = visible_objects[i][1]
                    if argmax_theta_val == gold_angle:
                        theta_accuracy += 1
                    angle_diff = min((argmax_theta_val - gold_angle) % 12,
                                     (gold_angle - argmax_theta_val) % 12)
                    if angle_diff <= 1:
                        neighbouring_accuracy += 1
                    num_used_landmarks += 1

            num_data_points += 1

        theta_accuracy /= float(max(num_used_landmarks, 1))
        neighbouring_accuracy /= float(max(num_used_landmarks, 1))

        logging.info(
            "Num datapoints %r, num visible landmarks %r and mean theta accuracy %r and neigbhouring accuracy %r",
            num_data_points, num_used_landmarks, theta_accuracy,
            neighbouring_accuracy)
        return theta_accuracy
    def test_classifier(self, agent, test_dataset):
        fp, fn, tp, tn = 0, 0, 0, 0
        fn_examples = []
        fp_examples = []
        perfect_segmented_examples = []

        for data_point_ix, data_point in enumerate(test_dataset):
            state = AgentObservedState(
                instruction=data_point.instruction,
                config=self.config,
                constants=self.constants,
                start_image=None,  # image,
                previous_action=None)
            segments = data_point.get_instruction_oracle_segmented()
            segment_lens = [len(s) for s in segments]
            num_mistakes = 0
            for i, seg_len in enumerate(segment_lens):
                segment_instruction = debug.instruction_to_string(
                    segments[i], self.config)
                num_read = 0
                while num_read < seg_len:
                    state = state.update_on_read()
                    num_read += 1
                    candidate_instruction = debug.instruction_to_string(
                        segments[i][:num_read], self.config)
                    model_log_probs = list(
                        self.model.get_segmentation_probs([state
                                                           ]).view(-1).data)
                    pred_action = gp.get_argmax_action(model_log_probs)
                    if num_read < seg_len and pred_action == 0:
                        tn += 1
                    elif num_read < seg_len and pred_action == 1:
                        fp += 1
                        num_mistakes += 1
                        fp_examples.append(
                            (candidate_instruction, segment_instruction))
                    elif num_read == seg_len and pred_action == 0:
                        fn += 1
                        num_mistakes += 1
                        fn_examples.append(
                            (candidate_instruction, segment_instruction))
                    elif num_read == seg_len and pred_action == 1:
                        tp += 1
                state = state.update_on_act_halt()

            if num_mistakes == 0:
                instruction_strings = []
                for seg in segments:
                    instruction_strings.append(
                        debug.instruction_to_string(seg, self.config))
                perfect_segmented_examples.append(
                    " ----- ".join(instruction_strings))

        # calculate precision
        if fp + tp > 0:
            precision = (tp * 1.0) / (fp + tp)
        else:
            precision = 1.0

        # calculate recall
        if fn + tp > 0:
            recall = (tp * 1.0) / (fn + tp)
        else:
            recall = 1.0

        if precision + recall > 0:
            f1 = (2.0 * precision * recall) / (precision + recall)
        else:
            f1 = 0.0

        # print FP examples
        random.shuffle(fp_examples)
        logging.info("FP EXAMPLES:")
        for ex in fp_examples[:20]:
            logging.info(ex)

        # print FN examples
        random.shuffle(fn_examples)
        logging.info("FN EXAMPLES:")
        for ex in fn_examples[:20]:
            logging.info(ex)

        # print perfect segmented examples
        random.shuffle(perfect_segmented_examples)
        logging.info("PERFECT SEGMENTED EXAMPLES:")
        for ex in perfect_segmented_examples[:20]:
            logging.info(ex)

        logging.info("testing results: precision=%.2f; recall=%f; f1=%.2f" %
                     (precision, recall, f1))
    def test_classifier(self, agent, test_dataset):

        accuracy = 0
        landmark_accuracy = 0
        theta_1_accuracy = 0
        theta_2_accuracy = 0
        theta_1_regression_accuracy = 0
        theta_2_regression_accuracy = 0
        r_accuracy = 0
        cmatrix_landmark = np.zeros((67, 67))
        cmatrix_theta1 = np.zeros((NO_BUCKETS, NO_BUCKETS))
        cmatrix_theta2 = np.zeros((NO_BUCKETS, NO_BUCKETS))
        cmatrix_range = np.zeros((15, 15))

        for data_point_ix, data_point in enumerate(test_dataset):
            state = AgentObservedState(instruction=data_point.instruction,
                                       config=self.config,
                                       constants=self.constants,
                                       start_image=None,
                                       previous_action=None)

            prob_landmark, prob_theta_1, prob_theta_2, prob_r = self.model.get_symbolic_text_batch(
                [state])
            prob_landmark_float = list(torch.exp(prob_landmark.data)[0])
            prob_theta_1_float = list(torch.exp(prob_theta_1.data)[0])
            prob_theta_2_float = list(torch.exp(prob_theta_2.data)[0])
            prob_r_float = list(torch.exp(prob_r.data)[0])

            landmark = gp.get_argmax_action(prob_landmark_float)
            theta_1 = gp.get_argmax_action(prob_theta_1_float)
            theta_2 = gp.get_argmax_action(prob_theta_2_float)
            r = gp.get_argmax_action(prob_r_float)

            gold_landmark, gold_theta_1, gold_theta_2, gold_r = \
                nav_drone_symbolic_instructions.get_nav_drone_symbolic_instruction_segment(data_point)

            plaintext_sentence = self.get_sentence(data_point.instruction)
            sentence_printed = False

            def direction(angle_binned):
                direction = "FAIL"
                if 42 <= angle_binned or 0 <= angle_binned < 6:
                    direction = "BEHIND OF"
                if 6 <= angle_binned < 18:
                    direction = "RIGHT OF"
                if 18 <= angle_binned < 30:
                    direction = "FRONT OF"
                if 30 <= angle_binned < 42:
                    direction = "LEFT OF"
                return direction

            if gold_landmark == landmark:
                landmark_accuracy += 1
            #else:
            #if not sentence_printed:
            #    print "SENTENCE IS: " + plaintext_sentence
            #    sentence_printed = True
            #print "INCORRECT LANDMARK: " + LANDMARK_NAMES[landmark] + " instead of " + LANDMARK_NAMES[gold_landmark]

            if gold_theta_1 == theta_1:
                theta_1_accuracy += 1

            if gold_theta_2 == theta_2:
                theta_2_accuracy += 1
            elif direction(theta_2) != direction(gold_theta_2):
                if not sentence_printed:
                    print "SENTENCE IS: " + plaintext_sentence
                    sentence_printed = True
                print "INCORRECT THETA: " + direction(theta_2) + "(" + str(
                    theta_2) + ")" + " instead of " + direction(
                        gold_theta_2) + "(" + str(gold_theta_2) + ")"

            theta_1_regression_accuracy += min(
                (gold_theta_1 - theta_1) % NO_BUCKETS,
                NO_BUCKETS - (gold_theta_1 - theta_1) % NO_BUCKETS)
            theta_2_regression_accuracy += min(
                (gold_theta_2 - theta_2) % NO_BUCKETS,
                NO_BUCKETS - (gold_theta_2 - theta_2) % NO_BUCKETS)

            if gold_r == r:
                r_accuracy += 1

            if gold_landmark == landmark and gold_theta_1 == theta_1 and gold_theta_2 == theta_2 and gold_r == r:
                accuracy += 1

            # update confusion matrix
            cmatrix_landmark[gold_landmark][landmark] += 1
            cmatrix_theta1[gold_theta_1][theta_1] += 1
            cmatrix_theta2[gold_theta_2][theta_2] += 1
            cmatrix_range[gold_r][r] += 1

        dataset_size = len(test_dataset)
        landmark_accuracy = (landmark_accuracy * 100) / float(
            max(1, dataset_size))
        theta_1_accuracy = (theta_1_accuracy * 100) / float(
            max(1, dataset_size))
        theta_2_accuracy = (theta_2_accuracy * 100) / float(
            max(1, dataset_size))
        theta_1_regression_accuracy = (BUCKET_WIDTH *
                                       theta_1_regression_accuracy) / float(
                                           max(1, dataset_size))
        theta_2_regression_accuracy = (BUCKET_WIDTH *
                                       theta_2_regression_accuracy) / float(
                                           max(1, dataset_size))
        r_accuracy = (r_accuracy * 100) / float(max(1, dataset_size))
        accuracy = (accuracy * 100) / float(max(1, dataset_size))

        logging.info(
            "Test accuracy on dataset of size %r is landmark %r, theta1 %r %r angle, theta2 %r %r angle, "
            "r %r, total acc %r", dataset_size, landmark_accuracy,
            theta_1_accuracy, theta_1_regression_accuracy, theta_2_accuracy,
            theta_2_regression_accuracy, r_accuracy, accuracy)
    def test(self, agent, test_dataset):

        mean_f1_score = 0
        num_data_points = 0

        for data_point_ix, data_point in enumerate(test_dataset):

            image, metadata = agent.server.reset_receive_feedback(data_point)
            pose = int(metadata["y_angle"] / 15.0)
            position_orientation = (metadata["x_pos"], metadata["z_pos"],
                                    metadata["y_angle"])
            state = AgentObservedState(instruction=data_point.instruction,
                                       config=self.config,
                                       constants=self.constants,
                                       start_image=image,
                                       previous_action=None,
                                       pose=pose,
                                       position_orientation=position_orientation,
                                       data_point=data_point)

            trajectory = data_point.get_trajectory()

            for action in trajectory:

                # Compute probabilities over list of visible objects
                log_prob, visible_objects = self.model.get_probs_and_visible_objects([state])

                prob = list(torch.exp(log_prob.data)[0])
                predicted_set = set([])
                for i in range(0, 63):
                    argmax_val = gp.get_argmax_action(prob[i])
                    if argmax_val == 1:
                        predicted_set.add(i)

                f1_score = SupervisedLearningDetectVisibleObject.get_f1_score(visible_objects[0], predicted_set)
                self.update_confusion_matrix(visible_objects[0], predicted_set)
                mean_f1_score += f1_score
                num_data_points += 1

                # print "Visible objects " + str(visible_objects[0])
                # print "Predicted Set" + str(predicted_set)
                # print "F1 score " + str(f1_score)
                # raw_input("Enter to proceed")

                # Send the action and get feedback
                image, reward, metadata = agent.server.send_action_receive_feedback(action)

                # Update the agent state
                pose = int(metadata["y_angle"] / 15.0)
                position_orientation = (metadata["x_pos"],
                                        metadata["z_pos"],
                                        metadata["y_angle"])
                state = state.update(
                    image, action, pose=pose,
                    position_orientation=position_orientation,
                    data_point=data_point)

            # Send final STOP action and get feedback
            image, reward, metadata = agent.server.halt_and_receive_feedback()

        mean_f1_score /= float(max(num_data_points, 1))

        logging.info("Object detection accuracy on a dataset of size %r the mean f1 score is %r",
                     num_data_points, mean_f1_score)
Ejemplo n.º 9
0
    def test_classifier(self, agent, test_dataset, test_images):

        accuracy = 0
        landmark_accuracy = 0
        landmark_bucket_accuracy = 0
        theta_1_accuracy = 0
        theta_2_accuracy = 0
        theta_1_regression_accuracy = 0
        theta_2_regression_accuracy = 0
        r_accuracy = 0
        cmatrix_landmark = np.zeros((67, 67))
        cmatrix_theta1 = np.zeros((self.num_buckets, self.num_buckets))
        cmatrix_theta2 = np.zeros((self.num_buckets, self.num_buckets))
        cmatrix_range = np.zeros((15, 15))

        for data_point_ix, data_point in enumerate(test_dataset):
            state = AgentObservedState(instruction=data_point.instruction,
                                       config=self.config,
                                       constants=self.constants,
                                       data_point=data_point,
                                       start_image=test_images[data_point_ix],
                                       previous_action=None)

            prob_landmark, prob_theta_1, prob_theta_2, prob_r = self.model.get_symbolic_text_batch([state])
            prob_landmark_float = list(torch.exp(prob_landmark.data)[0])
            prob_theta_1_float = list(torch.exp(prob_theta_1.data)[0])
            prob_theta_2_float = list(torch.exp(prob_theta_2.data)[0])
            prob_r_float = list(torch.exp(prob_r.data)[0])

            ###################################################
            # Heuristic code for finding argmax over landmark but only from visible set
            landmark_pos_dict = state.get_landmark_pos_dict()
            visible_objects = self.get_existing_landmarks(landmark_pos_dict)

            max_score = 0
            max_scoring_visible_object = -1
            for i in visible_objects:
                if prob_landmark_float[i] > max_score:
                    max_score = prob_landmark_float[i]
                    max_scoring_visible_object = i
            landmark = max_scoring_visible_object
            assert landmark != -1
            ###################################################

            # landmark = gp.get_argmax_action(prob_landmark_float)
            theta_1 = gp.get_argmax_action(prob_theta_1_float)
            theta_2 = gp.get_argmax_action(prob_theta_2_float)
            r = gp.get_argmax_action(prob_r_float)

            gold_landmark, gold_theta_1, gold_theta_2, gold_r = \
                nav_drone_symbolic_instructions.get_nav_drone_symbolic_instruction_segment(data_point)

            plaintext_sentence = self.get_sentence(data_point.instruction)

            x_pos, z_pos, y_angle = data_point.get_start_pos()
            landmark_r_theta_dict = self.get_all_landmark_r_theta(x_pos, z_pos, y_angle, landmark_pos_dict)
            if landmark_r_theta_dict[LANDMARK_NAMES[landmark]][1] == landmark_r_theta_dict[LANDMARK_NAMES[gold_landmark]][1]:
                landmark_bucket_accuracy += 1

            if gold_landmark == landmark:
                landmark_accuracy += 1
            else:
                logging.info("Sentence is %r, predicts landmark %r instead of %r",
                             plaintext_sentence,
                             LANDMARK_NAMES[landmark],
                             LANDMARK_NAMES[gold_landmark])

            if gold_theta_1 == theta_1:
                theta_1_accuracy += 1

            if gold_theta_2 == theta_2:
                theta_2_accuracy += 1

            theta_1_regression_accuracy += min((gold_theta_1 - theta_1) % self.num_buckets,
                                               self.num_buckets - (gold_theta_1 - theta_1) % self.num_buckets)
            theta_2_regression_accuracy += min((gold_theta_2 - theta_2) % self.num_buckets,
                                               self.num_buckets - (gold_theta_2 - theta_2) % self.num_buckets)

            if gold_r == r:
                r_accuracy += 1

            if gold_landmark == landmark and gold_theta_1 == theta_1 and gold_theta_2 == theta_2 and gold_r == r:
                accuracy += 1

            # update confusion matrix
            cmatrix_landmark[gold_landmark][landmark] += 1
            cmatrix_theta1[gold_theta_1][theta_1] += 1
            cmatrix_theta2[gold_theta_2][theta_2] += 1
            cmatrix_range[gold_r][r] += 1

        dataset_size = len(test_dataset)
        landmark_accuracy = (landmark_accuracy * 100) / float(max(1, dataset_size))
        landmark_bucket_accuracy = (landmark_bucket_accuracy * 100) / float(max(1, dataset_size))
        theta_1_accuracy = (theta_1_accuracy * 100) / float(max(1, dataset_size))
        theta_2_accuracy = (theta_2_accuracy * 100) / float(max(1, dataset_size))
        theta_1_regression_accuracy = (self.discretize * theta_1_regression_accuracy) / float(max(1, dataset_size))
        theta_2_regression_accuracy = (self.discretize * theta_2_regression_accuracy) / float(max(1, dataset_size))
        r_accuracy = (r_accuracy * 100) / float(max(1, dataset_size))
        accuracy = (accuracy * 100) / float(max(1, dataset_size))

        logging.info(
            "Test accuracy on dataset of size %r is %r percentage", accuracy)
        logging.info("Landmark accuracy is %r, landmark bucket accuracy is %r",
                     landmark_accuracy, landmark_bucket_accuracy)
        logging.info("Theta 1 accuracy is %r and regression accuracy is %r degree",
                     theta_1_accuracy, theta_1_regression_accuracy)
        logging.info("Theta 2 accuracy is %r and regression accuracy is %r degree",
                     theta_2_accuracy, theta_2_regression_accuracy)
        logging.info("Distance accuracy is %r", r_accuracy)