Ejemplo n.º 1
0
def get_correction_map(variable, chi1_f, chi2_f):
    """
    Get the correction map for the passed variable (integrated)
    """
    chi1_map = get_corr_map(chi1_f, variable)
    chi2_map = get_corr_map(chi2_f, variable)

    return divide(chi2_map, chi1_map)
Ejemplo n.º 2
0
def get_corr_map(corr_f, variable):
    """
    Get the correction map for one file (either chi1 or chi2) for a given
    variable
    """
    gen_h = corr_f.Get('fold_costh_phi_JpsiPt_JpsiRap_gen_HX')
    reco_h = corr_f.Get('fold_costh_phi_JpsiPt_JpsiRap_reco_HX')

    # project the histograms onto the variable and rebin them into the analysis
    # binning
    proj_dir = 0 if variable == 'costh' else 1
    gen_h = rebin_1d_binning(project(gen_h, proj_dir),
                             ANALYSIS_BINNING[variable])
    reco_h = rebin_1d_binning(project(reco_h, proj_dir),
                              ANALYSIS_BINNING[variable])
    return divide(reco_h, gen_h)
def get_correction_map(cmfile, use_pt=True, use_acc=False):
    """
    Get the correction map
    """
    map_name = 'fold_costh_phi_JpsiPt_JpsiRap_{}_HX'
    reco = 'acc' if use_acc else 'reco'

    if use_pt:
        gen_dist = project(cmfile.Get(map_name.format('gen')), [0, 1, 2])
        reco_dist = project(cmfile.Get(map_name.format(reco)), [0, 1, 2])
    else:
        gen_dist = project(cmfile.Get(map_name.format('gen')), [1, 0])
        reco_dist = project(cmfile.Get(map_name.format(reco)), [1, 0])

    accmap = divide(reco_dist, gen_dist)

    return accmap
Ejemplo n.º 4
0
def main(args):
    """Main"""
    frames = args.frames.split(',')
    if args.bin_variable is not None:
        bin_var = parse_func_var(args.bin_variable)
        if args.binning is None:
            logging.error('You have to define a binning for \'{}\' if you want '
                          'to use it as binning variable'.format(bin_var))
            sys.exit(1)

        binning = parse_binning(args.binning)
    else:
        binning = None
        bin_var = None

    logging.info('Processing gen level file')
    gen_hists = create_histograms(get_dataframe(args.genlevelfile), frames,
                                  args.ncosth, args.nphi, bin_var, binning)

    logging.info('Processing reco level file')
    reco_hists = create_histograms(get_dataframe(args.recolevelfile), frames,
                                   args.ncosth, args.nphi, bin_var, binning,
                                   WEIGHT_F)

    logging.debug('Scaling gen level hists by '.format(args.scale_gen))
    for hist in gen_hists.values():
        hist.Scale(args.scale_gen)

    logging.info('calculating acceptance maps')
    acc_maps = OrderedDict()
    for name, hist in reco_hists.iteritems():
        gen_map_n = [n for n in gen_hists if n in name]
        if len(gen_map_n) > 1:
            logging.warning('Found more than 1 gen level map for \'{}\': {}'
                            .format(name, gen_map_n))

        # Still use just the first, since we should always just have 1
        acc_maps[name] = divide(hist, gen_hists[gen_map_n[0]])


    logging.debug('storing to output file')
    outfile = r.TFile(args.outfile, 'recreate' if args.recreate else 'update')
    store_hists(outfile, gen_hists, 'gen_costh_phi', bin_var)
    store_hists(outfile, reco_hists, 'reco_costh_phi', bin_var)
    store_hists(outfile, acc_maps, 'acc_map_costh_phi', bin_var)
def get_ratio(dchi1, dchi2, variable, selections, hist_sett, get_weights=None):
    """
    Get the chic2 / chic1 ratio
    """
    hchi1 = create_hist(apply_selections(dchi1, selections), variable,
                        hist_sett, get_weights)
    hchi2 = create_hist(apply_selections(dchi2, selections), variable,
                        hist_sett, get_weights)

    # scale such that the integrated ratio is 1
    nchi1 = hchi1.Integral()
    nchi2 = hchi2.Integral()

    ratio = divide(hchi2, hchi1)

    ratio.Scale(nchi1 / nchi2)

    return ratio
Ejemplo n.º 6
0
def get_acc_mask(cmfile, use_pt, min_acc):
    """
    Define an acceptance (only) map mask to exclude events with very low
    acceptance values
    """
    logging.info('Masking all bins of correction map with acceptance < {}'
                 .format(min_acc))
    if use_pt:
        gen_dist = project(cmfile.Get(MAP_NAME.format('gen')), [0, 1, 2])
        acc_dist = project(cmfile.Get(MAP_NAME.format('acc')), [0, 1, 2])
    else:
        gen_dist = project(cmfile.Get(MAP_NAME.format('gen')), [1, 0])
        acc_dist = project(cmfile.Get(MAP_NAME.format('acc')), [1, 0])

    accmap = divide(acc_dist, gen_dist)

    mask = get_array(accmap) < min_acc
    return mask
Ejemplo n.º 7
0
def main(args):
    """Main"""
    numfile = r.TFile.Open(args.numfile)
    denomfile = r.TFile.Open(args.denomfile)

    # use sets so that it is easier to find the histograms with the same names
    num_hists = set(list_obj(numfile, 'TH1', args.filter))
    denom_hists = set(list_obj(denomfile, 'TH1', args.filter))
    ratio_hists = num_hists.intersection(denom_hists)

    outfile = r.TFile(args.outfile, 'update' if args.update else 'recreate')
    for ratio_n in ratio_hists:
        logging.debug('Creating: {}'.format(ratio_n))
        ratio = divide(numfile.Get(ratio_n), denomfile.Get(ratio_n))
        outfile.cd()
        ratio.Write()

    outfile.Write('', r.TObject.kWriteDelete)
    outfile.Close()
Ejemplo n.º 8
0
def get_correction_map(cmfile, use_pt=False, acc_only=False, min_acc=None):
    """
    Get the correction map from the correction map file
    """
    # TODO: Potentially rebin this thing
    reco = 'acc' if acc_only else 'reco'
    if use_pt:
        gen_dist = project(cmfile.Get(MAP_NAME.format('gen')), [0, 1, 2])
        reco_dist = project(cmfile.Get(MAP_NAME.format(reco)), [0, 1, 2])
    else:
        gen_dist = project(cmfile.Get(MAP_NAME.format('gen')), [1, 0])
        reco_dist = project(cmfile.Get(MAP_NAME.format(reco)), [1, 0])

    accmap = divide(reco_dist, gen_dist)

    if min_acc is not None:
        acc_mask = get_acc_mask(cmfile, use_pt, min_acc)
    else:
        acc_mask = None

    return AcceptanceCorrectionProvider(accmap, mask=acc_mask)
Ejemplo n.º 9
0
def main(args):
    """Main"""

    with open(args.bininfo, 'r') as finfo:
        costh_info = json.load(finfo)

    fitfile = r.TFile.Open(args.fitres)
    wsp = fitfile.Get('ws_mass_fit')

    fit_graph = get_fit_graph(wsp, costh_info['costh_bins'],
                              costh_info['costh_means'])

    histfile = r.TFile.Open(args.histfile)
    histlist = list(set(b.GetName() for b in histfile.GetListOfKeys()))

    ratio_combs = get_ratio_combs([h for h in histlist if 'chic1' in h],
                                  [h for h in histlist if 'chic2' in h])

    ratios = []
    for chi1_hist, chi2_hist in ratio_combs:
        h_chi1 = histfile.Get(chi1_hist)
        h_chi1.Scale(1 / h_chi1.Integral())
        h_chi2 = histfile.Get(chi2_hist)
        h_chi2.Scale(1 / h_chi2.Integral())
        ratio = divide(h_chi2, h_chi1)
        ratio.SetBinContent(ratio.GetNbinsX() + 1, 0)
        ratio.SetBinError(ratio.GetNbinsX() + 1, 0)

        chisqu, fit_norm = calc_chi2(ratio, fit_graph)
        ratios.append((get_delta_lambda(chi1_hist, chi2_hist),
                       ratio, chisqu, fit_norm))
        ratio.Scale(fit_norm)

    ratios.sort(key=lambda rr: sp.N(rr[0]))
    # print before removing "duplicates"
    print ('# Delta lambda, N, chi2, p, sigma')
    for ratio in ratios:
        print('{}, {:.3f}, {:.2f}, {:.3e}, {:.1f}'
              .format(ratio[0], ratio[3], ratio[2],
                      chi2.sf(ratio[2], fit_graph.GetN() - 1),
                      norm.isf(chi2.sf(ratio[2], fit_graph.GetN() - 1))))

    # only retain one of the possible delta lambda = 0 results
    ratios = unique_w_key(ratios, lambda rr: rr[0])

    leg = setup_legend(0.12, 0.12, 0.5, 0.4)
    leg.SetNColumns(2)

    plot_toy = [sp.S(x) for x in ['-8/5', '-1', '-1/3', '0', '4/3']]

    can = mkplot([rr[1] for rr in ratios if rr[0] in plot_toy],
                 yRange=[0, 0.65], yLabel='#chi_{c2} / #chi_{c1}',
                 leg=leg, xRange=[0.0, 1.0], drawOpt='L',
                 legEntries=['#Delta#lambda_{#theta} = ' + str(rr[0])
                             for rr in ratios if rr[0] in plot_toy])

    can = mkplot(fit_graph, can=can, leg=can.attached_tobjects[0],
                 legEntries=['data'],
                 attr=[{'color': 1, 'marker': 20, 'size': 1.5}], drawOpt='samePE')

    can.SaveAs(args.output)
Ejemplo n.º 10
0
def baseline_plot(baseline, compplots, **kwargs):
    """
    Make a plot and compare the compplots with the baseline plots. Divides the
    plot into an absolute value plot in the top and a ratio plot using the
    baseline as denominator in the bottom.

    Args:
        baseline (plotable ROOT object): The baseline plotable that will be used
            as comparison for all the compplots
        compplots (plotable ROOT objects): The plotables that should be compared
            to the baseline

    Keyword Args:
        basename (str): Legend entry to be used for the baseline
        legEntries (list of str): legend entries to be used for the compplots
        yRangeRatio (tuple of floats): The minimum and maximum y-value for the
            ratio pad
        compname (str): Name describing the whole of the compplots that will be
            used in the y-axis of the ratio pad
        putline (float or list of floats): Put horizontal lines into the ratio
            pad at the given values

    Other Keyword Args are forwarded to mkplot.

    Returns:
        TCanvasWrapper: Transparent wrapper holding the plot and all its objects

    See Also:
        mkplot, plot_on_canvas
    """
    comp_attr = kwargs.pop('attr', None)
    if comp_attr is None:
        comp_attr = default_attributes(open_markers=False, size=1.0)

    # the baseline will always be black. Try to match the size of the markers to
    # the one that were requested by the user
    base_attr = {'color': 1, 'marker': 20, 'size': 1.5}
    sizes = np.unique([a['size'] for a in comp_attr if 'size' in a])
    if len(sizes) == 1:
        base_attr['size'] = sizes[0]

    attr = [base_attr] + comp_attr

    # use the xLabel only for the lower plot
    xLabel = kwargs.pop('xLabel', None)

    # add the baseline name to the legend entries (if any)
    legEntries = kwargs.pop('legEntries', None)
    base_name = kwargs.pop('basename', 'baseline')
    if legEntries is not None:
        legEntries = [base_name] + legEntries

    # setup canvas
    can = kwargs.pop('can', None)
    if can is None:
        can_name = create_random_str()
        can = r.TCanvas(can_name, '', 50, 50, 600, 600)
    can.cd()

    ppad = r.TPad('_'.join([can.GetName(), 'plotpad']), 'plotpad', 0, 0.3, 1,
                  1)
    r.SetOwnership(ppad, False)
    ppad.Draw()

    # plot the comparison plot
    ppad = mkplot([baseline] + make_iterable(compplots),
                  attr=attr,
                  can=ppad,
                  legEntries=legEntries,
                  **kwargs)

    can.cd()
    rpad = r.TPad('_'.join([can.GetName(), 'ratiopad']), 'rpad', 0, 0, 1, 0.33)
    rpad.SetBottomMargin(0.2)
    r.SetOwnership(rpad, False)
    rpad.Draw()

    # remove some kwargs
    for kwarg in ['yLabel', 'legPos', 'leg', 'legEntries', 'yRange', 'logy']:
        kwargs.pop(kwarg, None)

    ratios = [divide(p, baseline) for p in make_iterable(compplots)]

    # determine the ratios and plot them
    rpad = mkplot(ratios,
                  attr=comp_attr,
                  can=rpad,
                  xLabel=xLabel,
                  yLabel=' / '.join(
                      [kwargs.pop('compname', 'distribution(s)'), base_name]),
                  yRange=kwargs.pop('yRangeRatio', [None, None]),
                  **kwargs)

    for hist in rpad.pltables:
        _set_ratio_properties(hist)

    putlines = kwargs.pop('putline', None)
    if putlines is not None:
        # Simply assume that all others follow the same as the first one
        lines = _get_ratio_lines(rpad.pltables[0], putlines)
        for line in lines:
            line.Draw()

        rpad.add_pltables(lines)

    # attach all plots to the returned canvas
    if not isinstance(can, TCanvasWrapper):
        can = TCanvasWrapper(can)

    # can.add_pltables(ppad.pltables + rpad.pltables)
    # for obj in ppad.attached_tobjects:
    #     can.add_tobject(obj)
    can.add_tobject(ppad)
    can.add_tobject(rpad)

    return can