Ejemplo n.º 1
0
    def run(self, bead):
        "creates the display"
        if self.__pins is None:
            self.__pins = self._hpins()
            if isinstance(self._fit, dict):
                cnf = dict(sequence=self._sequence,
                           oligos=self._oligos,
                           **dict(self._fit))
            elif self._fit is not True:
                cnf = dict(sequence=self._sequence,
                           oligos=self._oligos,
                           fit=self._fit)
            else:
                cnf = dict(sequence=self._sequence, oligos=self._oligos)
            self.__fits = self._items.new(FitToHairpinDict, config=cnf)
            if 'rescaling' in getattr(getattr(self._items, 'track', None),
                                      'instrument', ()):
                self.__fits.config = self.__fits.config.rescale(
                    float(self._items.track.instrument['rescaling']))

        cache = self.__cache
        if bead not in cache:
            try:
                cache[bead] = min(self.__fits[bead].distances.items(),
                                  key=lambda i: i[1][0])
            except Exception as exc:  # pylint: disable=broad-except
                cache[bead] = None, exc
        key, dist = cache[bead]
        if isinstance(dist, Exception):
            return hv.Overlay([hv.Curve(([0], [0])), hv.Text(0, 1, str(dist))])

        tmp = self(stretch=dist.stretch, bias=dist.bias)
        crv = tmp.elements(self._items[[bead]], group=key)  # pylint: disable=no-member

        hpc = self.__pins[key]
        data = np.copy(hpc.data)
        tmp = next(iter(crv)).data
        if isinstance(tmp, np.ndarray):
            data[:, 1] *= np.nanmax(tmp[:, 1])
        else:
            data[:, 1] *= np.nanmax(tmp['events'])

        def _pos(val):
            return .8 * np.nanmax(val) + .2 * np.nanmin(val)

        pars = np.round(dist.stretch, 1), np.round(dist.bias, 4)
        if pars[1] < 0:
            txt = f'{hpc.vdims[0]} = {pars[0]}·({hpc.kdims[0]}+{-pars[1]})'
        else:
            txt = f'{hpc.vdims[0]} = {pars[0]}·({hpc.kdims[0]}-{pars[1]})'
        text = hv.Text(_pos(data[:, 0]),
                       _pos(data[:, 1]),
                       txt,
                       kdims=hpc.kdims + hpc.vdims)
        return hv.Overlay(crv + [hpc.clone(data=data), text], group=key)
Ejemplo n.º 2
0
    def _create(self, opts, good):
        opts = deepcopy(opts)
        for i, j in self.graphdims().items():
            opts.setdefault(i, j)

        if isinstance(self._labels, str):
            crvs = [self._tpe(j, label=self._labels, **opts) for i, j in good]
        elif (len(good) < 3 and self._labels) or self._labels is True:
            crvs = [self._tpe(j, label=f'{i}', **opts) for i, j in good]
        else:
            crvs = [self._tpe(j, **opts) for _, j in good]

        if 0. < self._alpha < 1.:
            crvs = [i.options(alpha=self._alpha) for i in crvs]

        if not any(isinstance(i, hv.Text)
                   for i in crvs):  # dummy text for warnings
            for i in crvs:
                if isinstance(i.data, pd.DataFrame):
                    continue
                val = next(((j[0], j[1])
                            for j in i.data if np.isnan(j).sum() == 0), None)
                if val is not None:
                    break
            else:
                val = .5, 5.
            crvs.insert(
                0, hv.Text(*val,
                           '',
                           kdims=[opts['kdims'][0], opts['vdims'][0]]))
        return hv.Overlay(crvs)
Ejemplo n.º 3
0
    def _convert(self, kdims, ovrs):
        ovrs = super()._convert(kdims, ovrs)
        ind = self._refindex(kdims)
        if ind is None or ind >= len(tuple(ovrs)) or len(tuple(
                ovrs[ind])) == 0:
            return ovrs

        firsts = [
            next((j for j in i if hasattr(j, 'dpx_label')),
                 next((j for j in i if not isinstance(j, hv.Text)),
                      next(iter(i)))) for i in ovrs
        ]
        txt = [getattr(i, 'dpx_label', None) for i in firsts]
        txt = [i for i in txt if i]
        if len(txt) == 0 or len(txt) > 4:
            txt = ['']
        elif len(txt) > 1:
            txt = [i.label + ': ' + j for i, j in zip(firsts, txt)]

        ovrs = list(ovrs)
        first = next(iter(tuple(ovrs[ind])))
        kdims = first.kdims + first.vdims
        if isinstance(first.data, np.ndarray):
            minv = [np.nanmin(first.data[:, k]) for k in range(2)]
            maxv = [np.nanmax(first.data[:, k]) for k in range(2)]
        else:
            minv = [np.nanmin(first.data[k]) for k in first.data.columns[:2]]
            maxv = [np.nanmax(first.data[k]) for k in first.data.columns[:2]]

        ovrs.append(
            hv.Text(minv[0] * .7 + maxv[0] * .3,
                    minv[1] * .3 + maxv[1] * .7,
                    '\n'.join(txt),
                    kdims=kdims))
        return hv.Overlay(ovrs)
Ejemplo n.º 4
0
    def _convert(self, kdims, ovrs):  # pylint: disable=arguments-differ
        ind = self._refindex(kdims)
        if ind is None or ind < 0 or ind >= len(tuple(ovrs)):
            return ovrs

        area = next(iter(ovrs[ind])).to(hv.Area)
        ovrs[ind] = hv.Overlay([area.options(alpha=0.5)] + list(ovrs[ind]),
                               label=ovrs[ind].label,
                               group=ovrs[ind].group)
        return ovrs
Ejemplo n.º 5
0
    def run(self, key, bead, stretch, bias):
        "Creates the display"
        cache = self.__cache
        if (key, bead) != cache[0]:
            cache[0] = key, bead
            cache[1] = list(self.__fcn(key, bead))

        mid = len(cache[1]) // 2
        clones = [self.__clone(i, stretch, bias) for i in cache[1][mid:]]
        return hv.Overlay(cache[1][:mid] + clones)
Ejemplo n.º 6
0
    def errormessage(self, exc):
        "displays error message"
        args = getattr(exc, 'args', tuple())
        if not (isinstance(args, (list, tuple)) and len(args) == 2):
            return None

        opts = self.graphdims()
        opts.update(self._opts)
        cdims = {i: opts[i] for i in ('kdims', 'vdims') if i in opts}
        tdims = (cdims['kdims'] + opts.get('vdims', []))[:2]
        txt = (hv.Text(
            0.5, .9, str(args[0]),
            kdims=tdims).options(finalize_hooks=[self._error_finalize_hook]))
        return hv.Overlay(
            [txt,
             self._tpe(([0., np.NaN, 1.], [0., np.NaN, 1.]), **cdims)])
Ejemplo n.º 7
0
    def run(self, bead, sequence, stretch, bias):
        "creates the display"
        cache = self.__cache
        if bead != cache[0]:
            cache[0] = bead
            cache[1] = self.elements(self._items[[bead]])
        fcn = self.__clone
        clones = [fcn(i, stretch, bias) for i in cache[1]]

        if sequence != cache[2]:
            hpc = self.__pins[sequence]
            data = np.copy(hpc.data)
            if isinstance(clones[0].data, np.ndarray):
                data[:, 1] *= np.nanmax(clones[0].data[:, 1])
            else:
                data[:, 1] *= np.nanmax(clones[0].data['events'])
            cache[2] = sequence
            cache[3] = [hpc.clone(data=data)]

        return hv.Overlay(clones + cache[3])
Ejemplo n.º 8
0
def display(
        self,  # pylint: disable=too-many-arguments
        beads=None,
        calib=None,
        cmap='YlGn',
        colorbar=True):
    """
    displays the FoV with bead positions as well as calibration images.
    """
    if calib is None:
        calib = any(x.image is not None and x.image.size != 0
                    for x in self.beads.values())
    bnd = self.bounds()
    beads = list(self.beads.keys()
                 ) if beads is None or beads is Ellipsis else list(beads)
    if len(beads) and np.isscalar(beads[0]):
        beads = (beads, )

    itms = [
        hv.Image(self.image[::-1], bounds=bnd).options(colorbar=colorbar,
                                                       cmap=cmap)
    ]
    for grp in beads:
        if grp is None or grp is Ellipsis:
            grp = list(self.beads.keys())
        good = {i: j.position[:2] for i, j in self.beads.items() if i in grp}
        xvals = [i for i, _ in good.values()]
        yvals = [i for _, i in good.values()]
        txt = [f'{i}' for i in good.keys()]
        itms.append(hv.Points((xvals, yvals)))
        itms.extend(hv.Text(*i) for i in zip(xvals, yvals, txt))

    top = hv.Overlay(itms).redim(x='x (μm)', y='y (μm)')
    top = top.options({"Points": {"size": 10, "alpha": .6}})
    if not calib:
        return top

    bottom = hv.DynamicMap(
        lambda bead: self.beads[bead].display(colorbar=colorbar),
        kdims=['bead']).redim.values(bead=beads)
    return (top + bottom).cols(1)
Ejemplo n.º 9
0
    def _reference_method(self, key, bead):
        fcn, kdims = self._base()
        val = fcn(self._reference,
                  bead,
                  neverempty=True,
                  labels=self._reference)
        if self._refdims:
            val = val.redim(
                **{
                    i.name: i.clone(label=f'{self._reference}{i.label}')
                    for i in val.dimensions()
                })

        label = (key if self._labels is None else
                 False if self._labels is False else 'key')
        other = fcn(key, bead, neverempty=True, labels=label)
        if self._reflayout == 'same':
            return hv.Overlay(self._convert(kdims, [val, other]))
        if self._reflayout in ('left', 'top'):
            return (val + other).cols(1 if self._reflayout == 'top' else 2)
        return (other + val).cols(1 if self._reflayout == 'bottom' else 2)
Ejemplo n.º 10
0
    def _overlayed_method(self, key):
        kdims = self._default_kdims()
        kword = 'key' if self._overlay == 'bead' else 'bead'
        opts = kdims[self._overlay]
        fcn = partial(
            self._default_display, **{
                kword: key,
                'dataonly': len(kdims[self._overlay]) > 2,
                'neverempty': True
            })

        if len(kdims[self._overlay]) <= 2:
            crvs = [fcn(i) for i in opts]
        else:
            self._items = self._items.freeze()
            with ThreadPoolExecutor() as tpool:
                data = list(tpool.map(fcn, opts))

            with ProcessPoolExecutor() as ppool:
                crvs = list(ppool.map(self._process_pooled_display, data))
        return hv.Overlay(self._convert(kdims, crvs))
Ejemplo n.º 11
0
    def consensus(self, opts=None, hmap=True, normalize=True, **kwa):
        "return average bead"
        data = self.dataframe(False, normalize=normalize, **kwa)
        RampConsensusBeadProcessor.consensus(data, normalize, self.beads("ok"))

        data.columns = [self._name(i) for i in data.columns]
        cols = [
            i for i in data.columns
            if not any(j in i for j in ("zmag", "@low", "@high", "consensus"))
        ]
        _crv = partial(
            self._crv, data,
            (dict(color="gray", alpha=.25) if opts is None else opts),
            "Z (% bead length)" if normalize else "Z (µm)")
        if hmap:
            crvs = {int(i.split()[1]): _crv(i) for i in cols}
            mean = _crv("consensus")
            return (hv.DynamicMap(lambda x: crvs[x] * mean,
                                  kdims=['bead'
                                         ]).redim.values(bead=list(crvs)))

        return hv.Overlay([_crv(i) for i in cols + ["consensus"]])
Ejemplo n.º 12
0
 def _perall(self):
     if self._area:
         keys = self._keys if self._keys else self._items.beads.keys()
         return hv.Overlay([self._perbead(i) for i in keys])
     return self._run(self._items)
Ejemplo n.º 13
0
 def _perall(self, **opts):
     "Returns the method used by the dynamic map"
     return hv.Overlay(self.detailed(self._items, **opts))
Ejemplo n.º 14
0
 def _run(self, evts, **opts):
     "shows overlayed Curve items"
     return hv.Overlay(self.elements(evts, **opts))
Ejemplo n.º 15
0
 def __quadmeshtext(self, crvs):
     color = self._textcolor
     return hv.Overlay([
         hv.Text(0.01, i + .5, j).options(text_color=color)
         for i, (j, _) in enumerate(crvs)
     ])