Ejemplo n.º 1
0
def show_image_with_boxes(img, objects, calib, show3d=True):
    ''' Show image with 2D bounding boxes '''
    img1 = np.copy(img)  # for 2d bbox
    img2 = np.copy(img)  # for 3d bbox
    for obj in objects:
        if obj.type == 'DontCare': continue
        cv2.rectangle(img1, (int(obj.xmin), int(obj.ymin)),
                      (int(obj.xmax), int(obj.ymax)), (0, 255, 0), 2)
        box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
        img2 = utils.draw_projected_box3d(img2, box3d_pts_2d)
    Image.fromarray(img1).show()
    if show3d:
        Image.fromarray(img2).show()
Ejemplo n.º 2
0
def show_lidar_with_boxes(pc_velo,
                          objects,
                          calib,
                          img_fov=False,
                          img_width=None,
                          img_height=None,
                          fig=None):
    ''' Show all LiDAR points.
        Draw 3d box in LiDAR point cloud (in velo coord system) '''

    if not fig:
        fig = mlab.figure(figure="KITTI_POINT_CLOUD",
                          bgcolor=(0, 0, 0),
                          fgcolor=None,
                          engine=None,
                          size=(1250, 550))

    if img_fov:
        pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0, img_width,
                                         img_height)

    draw_lidar(pc_velo, fig1=fig)

    for obj in objects:

        if obj.type == 'DontCare': continue
        # Draw 3d bounding box
        box3d_pts_2d, box3d_pts_3d = kitti_utils.compute_box_3d(obj, calib.P)
        box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)

        # Draw heading arrow
        ori3d_pts_2d, ori3d_pts_3d = kitti_utils.compute_orientation_3d(
            obj, calib.P)
        ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
        x1, y1, z1 = ori3d_pts_3d_velo[0, :]
        x2, y2, z2 = ori3d_pts_3d_velo[1, :]

        draw_gt_boxes3d([box3d_pts_3d_velo],
                        fig=fig,
                        color=(0, 1, 1),
                        line_width=2,
                        draw_text=False)

        mlab.plot3d([x1, x2], [y1, y2], [z1, z2],
                    color=(0.5, 0.5, 0.5),
                    tube_radius=None,
                    line_width=1,
                    figure=fig)

    mlab.view(distance=90)
Ejemplo n.º 3
0
def show_image_with_boxes(img, objects, calib, show3d=False):
    ''' Show image with 2D bounding boxes '''

    img2 = np.copy(img)  # for 3d bbox
    for obj in objects:
        if obj.type == 'DontCare': continue
        #cv2.rectangle(img2, (int(obj.xmin),int(obj.ymin)),
        #    (int(obj.xmax),int(obj.ymax)), (0,255,0), 2)
        box3d_pts_2d, box3d_pts_3d = kitti_utils.compute_box_3d(obj, calib.P)
        if box3d_pts_2d is not None:
            img2 = kitti_utils.draw_projected_box3d(img2, box3d_pts_2d,
                                                    cnf.colors[obj.cls_id])
    if show3d:
        cv2.imshow("img", img2)
    return img2
Ejemplo n.º 4
0
def show_lidar_with_boxes(pc_velo,
                          objects,
                          calib,
                          img_fov=False,
                          img_width=None,
                          img_height=None):
    ''' Show all LiDAR points.
        Draw 3d box in LiDAR point cloud (in velo coord system) '''
    if 'mlab' not in sys.modules: import mayavi.mlab as mlab
    from mayavi_vis.viz_util import draw_lidar_simple, draw_lidar, draw_gt_boxes3d

    print(('All point num: ', pc_velo.shape[0]))
    fig = mlab.figure(figure=None,
                      bgcolor=(0, 0, 0),
                      fgcolor=None,
                      engine=None,
                      size=(1000, 500))
    if img_fov:
        pc_velo = get_lidar_in_image_fov(pc_velo, calib, 0, 0, img_width,
                                         img_height)
        print(('FOV point num: ', pc_velo.shape[0]))
    draw_lidar(pc_velo, fig=fig)

    for obj in objects:
        if obj.type == 'DontCare': continue
        # Draw 3d bounding box
        box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P)
        box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
        # Draw heading arrow
        ori3d_pts_2d, ori3d_pts_3d = utils.compute_orientation_3d(obj, calib.P)
        ori3d_pts_3d_velo = calib.project_rect_to_velo(ori3d_pts_3d)
        x1, y1, z1 = ori3d_pts_3d_velo[0, :]
        x2, y2, z2 = ori3d_pts_3d_velo[1, :]
        draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig)
        mlab.plot3d([x1, x2], [y1, y2], [z1, z2],
                    color=(0.5, 0.5, 0.5),
                    tube_radius=None,
                    line_width=1,
                    figure=fig)
    mlab.show(1)
Ejemplo n.º 5
0
def predictions_to_kitti_format(img_detections, calib, img_shape_2d, img_size, RGB_Map=None):
    predictions = np.zeros([50, 7], dtype=np.float32)
    count = 0
    for detections in img_detections:
        if detections is None:
            continue
        # Rescale boxes to original image
        for x, y, w, l, im, re, conf, cls_conf, cls_pred in detections:
            yaw = np.arctan2(im, re)
            predictions[count, :] = cls_pred, x/img_size, y/img_size, w/img_size, l/img_size, im, re
            count += 1

    predictions = bev_utils.inverse_yolo_target(predictions, cnf.boundary)
    if predictions.shape[0]:
        predictions[:, 1:] = aug_utils.lidar_to_camera_box(predictions[:, 1:], calib.V2C, calib.R0, calib.P)

    objects_new = []
    corners3d = []
    for index, l in enumerate(predictions):

        str = "Pedestrian"
        if l[0] == 0:str="Car"
        elif l[0] == 1:str="Pedestrian"
        elif l[0] == 2: str="Cyclist"
        else:str = "DontCare"
        line = '%s -1 -1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0' % str

        obj = kitti_utils.Object3d(line)
        obj.t = l[1:4]
        obj.h,obj.w,obj.l = l[4:7]
        obj.ry = np.arctan2(math.sin(l[7]), math.cos(l[7]))
    
        _, corners_3d = kitti_utils.compute_box_3d(obj, calib.P)
        corners3d.append(corners_3d)
        objects_new.append(obj)

    if len(corners3d) > 0:
        corners3d = np.array(corners3d)
        img_boxes, _ = calib.corners3d_to_img_boxes(corners3d)

        img_boxes[:, 0] = np.clip(img_boxes[:, 0], 0, img_shape_2d[1] - 1)
        img_boxes[:, 1] = np.clip(img_boxes[:, 1], 0, img_shape_2d[0] - 1)
        img_boxes[:, 2] = np.clip(img_boxes[:, 2], 0, img_shape_2d[1] - 1)
        img_boxes[:, 3] = np.clip(img_boxes[:, 3], 0, img_shape_2d[0] - 1)

        img_boxes_w = img_boxes[:, 2] - img_boxes[:, 0]
        img_boxes_h = img_boxes[:, 3] - img_boxes[:, 1]
        box_valid_mask = np.logical_and(img_boxes_w < img_shape_2d[1] * 0.8, img_boxes_h < img_shape_2d[0] * 0.8)

    for i, obj in enumerate(objects_new):
        x, z, ry = obj.t[0], obj.t[2], obj.ry
        beta = np.arctan2(z, x)
        alpha = -np.sign(beta) * np.pi / 2 + beta + ry

        obj.alpha = alpha
        obj.box2d = img_boxes[i, :]

    if RGB_Map is not None:
        labels, noObjectLabels = kitti_utils.read_labels_for_bevbox(objects_new)    
        if not noObjectLabels:
            labels[:, 1:] = aug_utils.camera_to_lidar_box(labels[:, 1:], calib.V2C, calib.R0, calib.P) # convert rect cam to velo cord

        target = bev_utils.build_yolo_target(labels)
        utils.draw_box_in_bev(RGB_Map, target)

    return objects_new
Ejemplo n.º 6
0
def demo():
    import mayavi.mlab as mlab
    from mayavi_vis.viz_util import draw_lidar, draw_lidar_simple, draw_gt_boxes3d
    dataset = kitti_object(os.path.join(ROOT_DIR, 'Data/KITTI/object'))
    data_idx = 692

    # Load data from dataset
    objects = dataset.get_label_objects(data_idx)
    objects[0].print_object()
    img = dataset.get_image(data_idx)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) 
    img_height, img_width, img_channel = img.shape
    print(('Image shape: ', img.shape))
    pc_velo = dataset.get_lidar(data_idx)[:,0:3]
    calib = dataset.get_calibration(data_idx)

    ## Draw lidar in rect camera coord
    #print(' -------- LiDAR points in rect camera coordination --------')
    #pc_rect = calib.project_velo_to_rect(pc_velo)
    #fig = draw_lidar_simple(pc_rect)
    #raw_input()

    # Draw 2d and 3d boxes on image
    print(' -------- 2D/3D bounding boxes in images --------')
    show_image_with_boxes(img, objects, calib)
    raw_input()

    # Show all LiDAR points. Draw 3d box in LiDAR point cloud
    print(' -------- LiDAR points and 3D boxes in velodyne coordinate --------')
    #show_lidar_with_boxes(pc_velo, objects, calib)
    #raw_input()
    show_lidar_with_boxes(pc_velo, objects, calib, True, img_width, img_height)
    raw_input()

    # Visualize LiDAR points on images
    print(' -------- LiDAR points projected to image plane --------')
    show_lidar_on_image(pc_velo, img, calib, img_width, img_height) 
    raw_input()
    
    # Show LiDAR points that are in the 3d box
    print(' -------- LiDAR points in a 3D bounding box --------')
    box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(objects[0], calib.P) 
    box3d_pts_3d_velo = calib.project_rect_to_velo(box3d_pts_3d)
    box3droi_pc_velo, _ = extract_pc_in_box3d(pc_velo, box3d_pts_3d_velo)
    print(('Number of points in 3d box: ', box3droi_pc_velo.shape[0]))

    fig = mlab.figure(figure=None, bgcolor=(0,0,0),
        fgcolor=None, engine=None, size=(1000, 500))
    draw_lidar(box3droi_pc_velo, fig=fig)
    draw_gt_boxes3d([box3d_pts_3d_velo], fig=fig)
    mlab.show(1)
    raw_input()
    
    # UVDepth Image and its backprojection to point clouds
    print(' -------- LiDAR points in a frustum from a 2D box --------')
    imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(pc_velo,
        calib, 0, 0, img_width, img_height, True)
    imgfov_pts_2d = pts_2d[fov_inds,:]
    imgfov_pc_rect = calib.project_velo_to_rect(imgfov_pc_velo)

    cameraUVDepth = np.zeros_like(imgfov_pc_rect)
    cameraUVDepth[:,0:2] = imgfov_pts_2d
    cameraUVDepth[:,2] = imgfov_pc_rect[:,2]

    # Show that the points are exactly the same
    backprojected_pc_velo = calib.project_image_to_velo(cameraUVDepth)
    print(imgfov_pc_velo[0:20])
    print(backprojected_pc_velo[0:20])

    fig = mlab.figure(figure=None, bgcolor=(0,0,0),
        fgcolor=None, engine=None, size=(1000, 500))
    draw_lidar(backprojected_pc_velo, fig=fig)
    raw_input()

    # Only display those points that fall into 2d box
    print(' -------- LiDAR points in a frustum from a 2D box --------')
    xmin,ymin,xmax,ymax = \
        objects[0].xmin, objects[0].ymin, objects[0].xmax, objects[0].ymax
    boxfov_pc_velo = \
        get_lidar_in_image_fov(pc_velo, calib, xmin, ymin, xmax, ymax)
    print(('2d box FOV point num: ', boxfov_pc_velo.shape[0]))

    fig = mlab.figure(figure=None, bgcolor=(0,0,0),
        fgcolor=None, engine=None, size=(1000, 500))
    draw_lidar(boxfov_pc_velo, fig=fig)
    mlab.show(1)
    raw_input()
Ejemplo n.º 7
0
def extract_frustum_data(idx_filename, split, output_filename, viz=False,
                       perturb_box2d=False, augmentX=1, type_whitelist=['Car']):
    ''' Extract point clouds and corresponding annotations in frustums
        defined generated from 2D bounding boxes
        Lidar points and 3d boxes are in *rect camera* coord system
        (as that in 3d box label files)
        
    Input:
        idx_filename: string, each line of the file is a sample ID
        split: string, either trianing or testing
        output_filename: string, the name for output .pickle file
        viz: bool, whether to visualize extracted data
        perturb_box2d: bool, whether to perturb the box2d
            (used for data augmentation in train set)
        augmentX: scalar, how many augmentations to have for each 2D box.
        type_whitelist: a list of strings, object types we are interested in.
    Output:
        None (will write a .pickle file to the disk)
    '''
    dataset = kitti_object(os.path.join(ROOT_DIR,'Data/KITTI/object'), split)
    data_idx_list = [int(line.rstrip()) for line in open(idx_filename)]

    id_list = [] # int number
    box2d_list = [] # [xmin,ymin,xmax,ymax]
    box3d_list = [] # (8,3) array in rect camera coord
    input_list = [] # channel number = 4, xyz,intensity in rect camera coord
    label_list = [] # 1 for roi object, 0 for clutter
    type_list = [] # string e.g. Car
    heading_list = [] # ry (along y-axis in rect camera coord) radius of
    # (cont.) clockwise angle from positive x axis in velo coord.
    box3d_size_list = [] # array of l,w,h
    frustum_angle_list = [] # angle of 2d box center from pos x-axis

    pos_cnt = 0
    all_cnt = 0
    for data_idx in data_idx_list:
        print('------------- ', data_idx)
        calib = dataset.get_calibration(data_idx) # 3 by 4 matrix
        objects = dataset.get_label_objects(data_idx)
        pc_velo = dataset.get_lidar(data_idx)
        pc_rect = np.zeros_like(pc_velo)
        pc_rect[:,0:3] = calib.project_velo_to_rect(pc_velo[:,0:3])
        pc_rect[:,3] = pc_velo[:,3]
        img = dataset.get_image(data_idx)
        img_height, img_width, img_channel = img.shape
        _, pc_image_coord, img_fov_inds = get_lidar_in_image_fov(pc_velo[:,0:3],
            calib, 0, 0, img_width, img_height, True)

        for obj_idx in range(len(objects)):
            if objects[obj_idx].type not in type_whitelist :continue

            # 2D BOX: Get pts rect backprojected 
            box2d = objects[obj_idx].box2d
            for _ in range(augmentX):
                # Augment data by box2d perturbation
                if perturb_box2d:
                    xmin,ymin,xmax,ymax = random_shift_box2d(box2d)
                    print(box2d)
                    print(xmin,ymin,xmax,ymax)
                else:
                    xmin,ymin,xmax,ymax = box2d
                box_fov_inds = (pc_image_coord[:,0]<xmax) & \
                    (pc_image_coord[:,0]>=xmin) & \
                    (pc_image_coord[:,1]<ymax) & \
                    (pc_image_coord[:,1]>=ymin)
                box_fov_inds = box_fov_inds & img_fov_inds
                pc_in_box_fov = pc_rect[box_fov_inds,:]
                # Get frustum angle (according to center pixel in 2D BOX)
                box2d_center = np.array([(xmin+xmax)/2.0, (ymin+ymax)/2.0])
                uvdepth = np.zeros((1,3))
                uvdepth[0,0:2] = box2d_center
                uvdepth[0,2] = 20 # some random depth
                box2d_center_rect = calib.project_image_to_rect(uvdepth)
                frustum_angle = -1 * np.arctan2(box2d_center_rect[0,2],
                    box2d_center_rect[0,0])
                # 3D BOX: Get pts velo in 3d box
                obj = objects[obj_idx]
                box3d_pts_2d, box3d_pts_3d = utils.compute_box_3d(obj, calib.P) 
                _,inds = extract_pc_in_box3d(pc_in_box_fov, box3d_pts_3d)
                label = np.zeros((pc_in_box_fov.shape[0]))
                label[inds] = 1
                # Get 3D BOX heading
                heading_angle = obj.ry
                # Get 3D BOX size
                box3d_size = np.array([obj.l, obj.w, obj.h])

                # Reject too far away object or object without points
                if ymax-ymin<25 or np.sum(label)==0:
                    continue

                id_list.append(data_idx)
                box2d_list.append(np.array([xmin,ymin,xmax,ymax]))
                box3d_list.append(box3d_pts_3d)
                input_list.append(pc_in_box_fov)
                label_list.append(label)
                type_list.append(objects[obj_idx].type)
                heading_list.append(heading_angle)
                box3d_size_list.append(box3d_size)
                frustum_angle_list.append(frustum_angle)
    
                # collect statistics
                pos_cnt += np.sum(label)
                all_cnt += pc_in_box_fov.shape[0]
        
    print('Average pos ratio: %f' % (pos_cnt/float(all_cnt)))
    print('Average npoints: %f' % (float(all_cnt)/len(id_list)))
    
    with open(output_filename,'wb') as fp:
        pickle.dump(id_list, fp)
        pickle.dump(box2d_list,fp)
        pickle.dump(box3d_list,fp)
        pickle.dump(input_list, fp)
        pickle.dump(label_list, fp)
        pickle.dump(type_list, fp)
        pickle.dump(heading_list, fp)
        pickle.dump(box3d_size_list, fp)
        pickle.dump(frustum_angle_list, fp)
    
    if viz:
        import mayavi.mlab as mlab
        for i in range(10):
            p1 = input_list[i]
            seg = label_list[i] 
            fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4),
                fgcolor=None, engine=None, size=(500, 500))
            mlab.points3d(p1[:,0], p1[:,1], p1[:,2], seg, mode='point',
                colormap='gnuplot', scale_factor=1, figure=fig)
            fig = mlab.figure(figure=None, bgcolor=(0.4,0.4,0.4),
                fgcolor=None, engine=None, size=(500, 500))
            mlab.points3d(p1[:,2], -p1[:,0], -p1[:,1], seg, mode='point',
                colormap='gnuplot', scale_factor=1, figure=fig)
            raw_input()