Ejemplo n.º 1
0
def reduce_gradients(model, _type='sum'):
    types = ['sum', 'avg']
    assert _type in types, 'gradients method must be in "{}"'.format(types)
    log_once("gradients method is {}".format(_type))
    if get_world_size() > 1:
        for param in model.parameters():
            if param.requires_grad:
                dist.all_reduce(param.grad.data)
                if _type == 'avg':
                    param.grad.data /= get_world_size()
    else:
        return None
Ejemplo n.º 2
0
    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        # print x.size()
        x = self.maxpool(x)
        # print x.size()
        p1 = self.layer1(x)
        p2 = self.layer2(p1)
        p3 = self.layer3(p2)
        # p3 = torch.cat([p2, p3], 1)
        log_once("p3 {}".format(p3.size()))
        p4 = self.layer4(p3)

        return p2, p3, p4