Ejemplo n.º 1
0
def _convertToCommonFormat(data):
    """
    Convert either a distribution or a set of data to a (stats, cdf, pdf) pair
  """
    if isinstance(data, Distributions.Distribution):
        # data is a subclass of BoostDistribution, generate needed stats, and pass in cdf and pdf.
        stats = {
            "mean": data.untruncatedMean(),
            "stdev": data.untruncatedStdDev()
        }
        cdf = lambda x: data.cdf(x)
        pdf = lambda x: data.pdf(x)
        return stats, cdf, pdf
    if type(data).__name__ == "tuple":
        # data is (list,list), then it is a list of weights
        assert len(data) == 2
        points, weights = data
        assert len(points) == len(weights)
    elif '__len__' in dir(data):
        # data is list, then it is a list of data, generate uniform weights and begin
        points = data
        weights = [1.0 / len(points)] * len(points)
    else:
        raise IOError("Unknown type in _convertToCommonFormat")
    #Sturges method for determining number of bins
    numBins = int(math.ceil(mathUtils.log2(len(points)) + 1))
    return _getPDFandCDFfromWeightedData(points, weights, numBins, False,
                                         'linear')
Ejemplo n.º 2
0
 def __processData(self, data, methodInfo):
   """
     Method to process the computed data
     @ In, data, np.array, the data to process
     @ In, methodInfo, dict, the info about which processing method needs to be used
     @ Out, ret, dict, the processed data
   """
   ret = {}
   if hasattr(data,'tolist'):
     sortedData = data.tolist()
   else:
     sortedData = list(data)
   sortedData.sort()
   low = sortedData[0]
   high = sortedData[-1]
   dataRange = high - low
   ret['low'] = low
   ret['high'] = high
   if not 'binMethod' in methodInfo:
     numBins = methodInfo.get("numBins", 10)
   else:
     binMethod = methodInfo['binMethod']
     dataN = len(sortedData)
     if binMethod == 'square-root':
       numBins = int(math.ceil(math.sqrt(dataN)))
     elif binMethod == 'sturges':
       numBins = int(math.ceil(mathUtils.log2(dataN) + 1))
     else:
       self.raiseADebug("Unknown binMethod " + binMethod, 'ExceptedError')
       numBins = 5
   ret['numBins'] = numBins
   kind = methodInfo.get("kind", "uniformBins")
   if kind == "uniformBins":
     bins = [low + x * dataRange / numBins for x in range(1, numBins)]
     ret['minBinSize'] = dataRange / numBins
   elif kind == "equalProbability":
     stride = len(sortedData) // numBins
     bins = [sortedData[x] for x in range(stride - 1, len(sortedData) - stride + 1, stride)]
     if len(bins) > 1:
       ret['minBinSize'] = min(map(lambda x, y: x - y, bins[1:], bins[:-1]))
     else:
       ret['minBinSize'] = dataRange
   counts = mathUtils.countBins(sortedData, bins)
   ret['bins'] = bins
   ret['counts'] = counts
   ret.update(mathUtils.calculateStats(sortedData))
   skewness = ret["skewness"]
   delta = math.sqrt((math.pi / 2.0) * (abs(skewness) ** (2.0 / 3.0)) /
                     (abs(skewness) ** (2.0 / 3.0) + ((4.0 - math.pi) / 2.0) ** (2.0 / 3.0)))
   delta = math.copysign(delta, skewness)
   alpha = delta / math.sqrt(1.0 - delta ** 2)
   variance = ret["sampleVariance"]
   omega = variance / (1.0 - 2 * delta ** 2 / math.pi)
   mean = ret['mean']
   xi = mean - omega * delta * math.sqrt(2.0 / math.pi)
   ret['alpha'] = alpha
   ret['omega'] = omega
   ret['xi'] = xi
   return ret
Ejemplo n.º 3
0
        2.1,2.2,2.3,2.4,
        3.1,3.2,3.3]
boundaries = [1,2,3]
counted = mathUtils.countBins(data,boundaries)
checkArray('countBins',counted,[2,3,4,3],1e-5)

### check "log2"
data = [(1e-15,-49.82892),
          (0.5,-1.0),
          (1.0,0.0),
            (4,2.0),
           (10,3.32193),
         (1e34,112.945556)]
for d in data:
  dat,soln = d
  val = mathUtils.log2(dat)
  checkAnswer('log2',val,soln,1e-5)

### check "calculateStats"
data = [0.6752,0.0610,0.1172,0.5233,0.0056]
moms = mathUtils.calculateStats(data)
checkAnswer('calculateStats.mean'          ,moms['mean'          ], 0.27646 ,1e-5)
checkAnswer('calculateStats.stdev'         ,moms['stdev'         ], 0.30211 ,1e-5)
checkAnswer('calculateStats.variance'      ,moms['variance'      ], 0.073015,1e-5)
checkAnswer('calculateStats.skewness'      ,moms['skewness'      ], 0.45134 ,1e-5)
checkAnswer('calculateStats.kurtosis'      ,moms['kurtosis'      ],-1.60548 ,1e-5)
checkAnswer('calculateStats.sampleVariance',moms['sampleVariance'], 0.09127 ,1e-5)

### check "historySetWindows"
# TODO I think this takes a historySet?  Documentation is poor.