Ejemplo n.º 1
0
    def test_nested_list(self):
        in_list = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10]]
        flat_list = list(mh.flatten(in_list))
        self.assertEqual(flat_list, range(1, 11))

        in_list = [1, [[2, 3], [4, 5]], 6, 7, [8, 9, [10]]]
        self.assertEqual(flat_list, range(1, 11))
Ejemplo n.º 2
0
def main(args):
    """Main"""
    # In order to not have to load the whole file first determine the names of
    # the branches that are necessary
    var_names = [('costh', 'phi')]
    if args.genlevel:
        logging.info('Also adding generator level folding')
        var_names.append(('gen_costh', 'gen_phi'))
    frames = args.frames.split(',')

    load_variables = ['_'.join(p) for p in product(flatten(var_names), frames)]

    for infile in args.inputfiles:
        logging.info('Processing file {}'.format(infile))
        if not args.treename:
            treename = get_treename(infile)
        else:
            treename = args.treename

        df = get_dataframe(infile, treename, columns=load_variables)

        for var_pair in var_names:
            for frame in frames:
                costh_f, phi_f = get_folded_frame(df, frame, *var_pair)
                add_branch(costh_f, '_'.join([var_pair[0], frame, 'fold']),
                           infile, treename)
                add_branch(phi_f, '_'.join([var_pair[1], frame, 'fold']),
                           infile, treename)
def shift_graphs(graphs, abs_shift, offset=1):
    """
    Shift all graphs slightly along the horizontal direction.
    If offset==0 the first graph will remain unchanged and the others will be
    shifted symmetrically around this one, otherwise all the graphs will just be
    distributed symmetrically around the 0
    """
    # Just define 17 shifts and hope that this will be enough for all variations
    shifts = list(flatten([0] + [[-abs_shift * i, abs_shift * i] for i in xrange(1, 8)]))
    return [shift_graph_horizontal(g, shifts[i + offset]) for i, g in enumerate(graphs)]
def main(args):
    """Main"""
    data = get_dataframe(args.scanfile, columns=list(flatten(args.variables)))

    outfile = r.TFile.Open(args.outfile, 'recreate')

    for varx, vary in args.variables:
        corr_graphs = make_pair_correlation(data, varx, vary, args.physical_lambdas)
        for cg in corr_graphs:
            cg.Write()

    outfile.Close()
Ejemplo n.º 5
0
def create_muon_pz_res_map(dfr, n_bins_res, n_bins_p):
    """
    See above, same thing for muon pz
    """
    pz_bins = get_equi_pop_bins(dfr, lambda df: df.gen_muPPz.abs(), n_bins_p)
    pz_bins = np.array(sorted({b for b in flatten(pz_bins)}))

    res_bins = np.linspace(-0.15, 0.15, n_bins_res)

    hist_sett = (len(pz_bins) - 1, pz_bins, len(res_bins) - 1, res_bins)

    pz_p_map = create_res_v_gen_map(dfr, 'muPPz', hist_sett)
    pz_n_map = create_res_v_gen_map(dfr, 'muNPz', hist_sett)

    muon_map = pz_p_map.Clone()
    muon_map.Add(pz_n_map)

    return muon_map
Ejemplo n.º 6
0
def get_eta_binning(effs):
    """
    Get the eta binning from the efficiencies and also check that the eta range
    is contiguous throughout the whole range
    """
    # first get all unique bin borders than check if all adjacent pairs are
    # also present in the efficiencies
    # to facilitate the task sort the unique borders
    uniq_bin_bord = sorted({b for b in flatten(effs)})
    possible_bins = zip(uniq_bin_bord[:-1], uniq_bin_bord[1:])

    for pbin in possible_bins:
        if pbin not in effs:
            logging.error(
                'The eta binning is not contiguous! The possible bin '
                '{:.1f} - {:.1f} is not present'.format(*pbin))
            return None

    return uniq_bin_bord
Ejemplo n.º 7
0
def create_muon_pxy_res_map(dfr, n_bins_res, n_bins_p):
    """
    Create the muon px and py combined residual maps (see photon for binning)
    """
    px_bins = get_equi_pop_bins(dfr, lambda df: df.gen_muPPx.abs(), n_bins_p)
    px_bins = np.array(sorted({b for b in flatten(px_bins)}))

    res_bins = np.linspace(-0.15, 0.15, n_bins_res)

    hist_sett = (len(px_bins) - 1, px_bins, len(res_bins) - 1, res_bins)

    px_p_map = create_res_v_gen_map(dfr, 'muPPx', hist_sett)
    px_n_map = create_res_v_gen_map(dfr, 'muNPx', hist_sett)
    py_p_map = create_res_v_gen_map(dfr, 'muPPy', hist_sett)
    py_n_map = create_res_v_gen_map(dfr, 'muNPy', hist_sett)

    muon_map = px_n_map.Clone()
    for mu_map in [px_n_map, py_p_map, py_n_map]:
        muon_map.Add(mu_map)

    return muon_map
Ejemplo n.º 8
0
def compile_load_vars(selections, varx, vary):
    """Compile the list of variables that has to be loaded"""
    vars_to_load = [
        sf.collect_requirements(sel[0]) for sel in selections.values()
    ]
    if any(sel[1] is not None for sel in selections.values()):
        # simply load all efficiencies in case they are needed
        vars_to_load.append('*eff_sm')

    vars_to_load.append('costh_HX')  # needed to bin in costh_HX

    if varx in FUNCVARS:
        vars_to_load.append(FUNCVARS[varx].requires)
    else:
        vars_to_load.append(varx)
    if vary in FUNCVARS:
        vars_to_load.append(FUNCVARS[vary].requires)
    else:
        vars_to_load.append(vary)

    return list(set(flatten(vars_to_load)))  # remove duplicates
Ejemplo n.º 9
0
def create_photon_res_map(dfr, n_bins_res, n_bins_p):
    """
    Create the photon residuals map for a given number of resolution bins (equal
    spacing) and a given number of P(x,y,z) bins (equal population)
    """
    # determine the P(x,y,x) binning
    px_bins = get_equi_pop_bins(dfr, lambda df: df.gen_photonPx.abs(),
                                n_bins_p)
    # get_equi_pop_bins returns bins in an unsuitable format transform them to
    # proper format
    px_bins = np.array(sorted({b for b in flatten(px_bins)}))
    res_bins = np.linspace(-2, 2, n_bins_res)

    hist_sett = (len(px_bins) - 1, px_bins, len(res_bins) - 1, res_bins)

    px_map = create_res_v_gen_map(dfr, 'photonPx', hist_sett)
    py_map = create_res_v_gen_map(dfr, 'photonPy', hist_sett)
    pz_map = create_res_v_gen_map(dfr, 'photonPz', hist_sett)

    photon_map = px_map.Clone()
    photon_map.Add(py_map)
    photon_map.Add(pz_map)

    return photon_map
def get_all_variations():
    """
    Get all the possible variations
    """
    return (list(flatten(v)) for v in product(*VARIATIONS))
Ejemplo n.º 11
0
    def test_chunks_preserves_order(self):
        in_list = range(100)
        chunk_size = 20

        self.assertEqual(list(mh.flatten(mh.chunks(in_list, chunk_size))),
                         in_list)
Ejemplo n.º 12
0
 def test_already_flat(self):
     in_list = list(xrange(10))
     flat_list = list(mh.flatten(in_list))
     self.assertEqual(flat_list, in_list)