Ejemplo n.º 1
0
 def __init__(self, bn, channels, out_channels=None):
     nn.Module.__init__(self)
     if not out_channels:
         out_channels = channels
     self.shortcut = None
     if out_channels != channels:
         self.shortcut = nn.Conv2d(channels, out_channels, kernel_size=1)
     self.conv = nn.Sequential(
         nn.InstanceNorm2d(channels, eps=1e-3),
         get_norm_layer(bn, 2, in_size=channels), nn.ReLU(),
         nn.Conv2d(channels, out_channels, kernel_size=1),
         nn.InstanceNorm2d(out_channels, eps=1e-3),
         get_norm_layer(bn, 2, in_size=out_channels), nn.ReLU(),
         nn.Conv2d(out_channels, out_channels, kernel_size=1))
Ejemplo n.º 2
0
 def __init__(self, bn, in_channel, output_points):
     nn.Module.__init__(self)
     self.output_points = output_points
     self.conv = nn.Sequential(
         nn.InstanceNorm2d(in_channel, eps=1e-3),
         get_norm_layer(bn, 2, in_size=in_channel), nn.ReLU(),
         nn.Conv2d(in_channel, output_points, kernel_size=1))
Ejemplo n.º 3
0
    def __init__(self, in_channel, out_channel, hidden_unit=[8, 8], bn=None):
        super(WeightNet, self).__init__()

        self.bn = bn is not None
        self.mlp_convs = nn.ModuleList()
        self.mlp_bns = nn.ModuleList()
        if hidden_unit is None or len(hidden_unit) == 0:
            self.mlp_convs.append(nn.Conv2d(in_channel, out_channel, 1))
            self.mlp_bns.append(get_norm_layer(bn, 2, in_size=out_channel))
        else:
            self.mlp_convs.append(nn.Conv2d(in_channel, hidden_unit[0], 1))
            self.mlp_bns.append(get_norm_layer(bn, 2, in_size=hidden_unit[0]))
            for i in range(1, len(hidden_unit)):
                self.mlp_convs.append(nn.Conv2d(hidden_unit[i - 1], hidden_unit[i], 1))
                self.mlp_bns.append(get_norm_layer(bn, 2, in_size=hidden_unit[i]))
            self.mlp_convs.append(nn.Conv2d(hidden_unit[-1], out_channel, 1))
            self.mlp_bns.append(get_norm_layer(bn, 2, in_size=out_channel))
Ejemplo n.º 4
0
 def __init__(self, nsample, in_channel, out_channel, weightnet=16, bn=None, use_leaky=True, input_tp=True):
     super(PointConv, self).__init__()
     self.bn = bn is not None
     self.nsample = nsample
     self.weightnet = WeightNet(3, weightnet)
     self.linear = nn.Linear(weightnet * in_channel, out_channel)
     if self.bn:
         self.bn_linear = get_norm_layer(bn, 1, in_size=out_channel)
     self.input_tp = input_tp
     self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(0.1, inplace=True)
Ejemplo n.º 5
0
 def __init__(self, bn, channels, points, out_channels=None):
     nn.Module.__init__(self)
     if not out_channels:
         out_channels = channels
     self.short_cut = None
     if out_channels != channels:
         self.short_cut = nn.Conv2d(channels, out_channels, kernel_size=1)
     self.conv1 = nn.Sequential(
         nn.InstanceNorm2d(channels, eps=1e-3),
         get_norm_layer(bn, 2, in_size=channels),
         nn.ReLU(),
         nn.Conv2d(channels, out_channels, kernel_size=1),  # b*c*n*1
         Transpose(1, 2))
     # Spatial Correlation Layer
     self.conv2 = nn.Sequential(get_norm_layer(bn, 2, in_size=points),
                                nn.ReLU(),
                                nn.Conv2d(points, points, kernel_size=1))
     self.conv3 = nn.Sequential(
         Transpose(1, 2), nn.InstanceNorm2d(out_channels, eps=1e-3),
         get_norm_layer(bn, 2, in_size=out_channels), nn.ReLU(),
         nn.Conv2d(out_channels, out_channels, kernel_size=1))
Ejemplo n.º 6
0
    def __init__(self, nsample, in_channel, mlp, bn=None, use_leaky=True):
        super(PointConvFlow, self).__init__()
        self.nsample = nsample
        self.bn = bn is not None
        self.mlp_convs = nn.ModuleList()
        if self.bn:
            self.mlp_bns = nn.ModuleList()
        last_channel = in_channel
        for out_channel in mlp:
            self.mlp_convs.append(nn.Conv2d(last_channel, out_channel, 1))
            if self.bn:
                self.mlp_bns.append(get_norm_layer(bn, 2, in_size=out_channel))
            last_channel = out_channel

        self.relu = nn.ReLU(inplace=True) if not use_leaky else nn.LeakyReLU(0.1, inplace=True)