Ejemplo n.º 1
0
M_rotate = cv2.getRotationMatrix2D((width // 2, height // 2), 45, 0.5)
print('Rotation Matrix')
print(M_rotate)

# 取得平移矩陣
M_translate = np.array([[1, 0, 100], [0, 1, -50]], dtype=np.float32)
print('Translation Matrix')
print(M_translate)

# 旋轉
img_rotate = cv2.warpAffine(img, M_rotate, (height, width))

# 平移
img_rotate_trans = cv2.warpAffine(img_rotate, M_translate, (height, width))

showImages(img=img, img_rotate=img_rotate, img_rotate_trans=img_rotate_trans)
"""
Affine Transformation - Case 2: any three point
"""

# 給定兩兩一對,共三對的點
# 這邊我們先用手動設定三對點,一般情況下會有點的資料或是透過介面手動標記三個點
height, width, _ = img.shape

points = np.array([[50, 50], [300, 100], [200, 300]], dtype=np.float32)
points_prime = np.array([[80, 80], [330, 150], [300, 300]], dtype=np.float32)

# 取得 affine 矩陣並做 affine 操作
M_affine = cv2.getAffineTransform(points, points_prime)
img_affine = cv2.warpAffine(img, M_affine, (height, width))
Ejemplo n.º 2
0
"""Working directory: CupoyLearning

根據以下的參考點,嘗試做透視變換

point1 = np.array([[60, 40], [420, 40], [420, 510], [60, 510]], dtype=np.float32)
point2 = np.array([[0, 80], [w, 120], [w, 430], [0, 470]], dtype=np.float32)
"""

path = "data/image/lena.png"
img = cv2.imread(path)
"""
透視轉換
"""

height, width, _ = img.shape

# 設定四對點,並取得 perspective 矩陣
w = 120
point1 = np.array([[60, 40], [420, 40], [420, 510], [60, 510]],
                  dtype=np.float32)
point2 = np.array([[0, 80], [w, 120], [w, 430], [0, 470]], dtype=np.float32)

# 計算 透視變換 Perspective Transformation 之矩陣
M = cv2.getPerspectiveTransform(point1, point2)
print("M\n", M)

# perspective 轉換
img_perspective = cv2.warpPerspective(img, M, (width, height))

showImages(img=img, img_perspective=img_perspective)
Ejemplo n.º 3
0
width = 224
height = 224
batch_size = 4

img = cv2.imread('image/Tano.JPG')

# 改變圖片尺寸
img = cv2.resize(img, (224, 224))

# cv2讀進來是BGR,轉成RGB
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)

img_origin = img.copy()
img = np.array(img, dtype=np.float32)

showImages(img_origin=img_origin, img=img)

# 輸入generator要是四維,(224,224,3)變成(4,224,224,3)
img_combine = np.array([img, img, img, img], dtype=np.uint8)
batch_gen = train_generator.flow(img_combine, batch_size=4)
assert next(batch_gen).shape == (batch_size, width, height, 3)

images = next(batch_gen)
images = images.astype(np.uint8)
showImages(origin=img_origin,
           gen0=images[0],
           gen1=images[1],
           gen2=images[2],
           gen3=images[3])
"""
示範如何導入 ImageDataGenerator 到 Keras 訓練中
Ejemplo n.º 4
0
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# region 教學
"""
模糊: 透過 Gaussian Filter 實作模糊操作
"""

img_blur = img.copy()

# 重複多次 Gaussian 模糊的操作來加深模糊的程度
img_blur1 = cv2.GaussianBlur(img_blur, (5, 5), 0)
img_blur2 = cv2.GaussianBlur(img_blur1, (5, 5), 0)
img_blur3 = cv2.GaussianBlur(img_blur2, (5, 5), 0)

showImages(img=img,
           img_blur1=img_blur1,
           img_blur2=img_blur2,
           img_blur3=img_blur3)
"""
邊緣檢測: 透過 Sobel Filter 實作邊緣檢測
組合 x-axis, y-axis 的影像合成
"""

# 對 x 方向做 Sobel 邊緣檢測
img_sobel_x = cv2.Sobel(gray, cv2.CV_16S, dx=1, dy=0, ksize=3)
img_sobel_x = cv2.convertScaleAbs(img_sobel_x)

# 對 y 方向做 Sobel 邊緣檢測
img_sobel_y = cv2.Sobel(gray, cv2.CV_16S, dx=0, dy=1, ksize=3)
img_sobel_y = cv2.convertScaleAbs(img_sobel_y)

# x, y 方向的邊緣檢測後的圖各以一半的全重進行合成
Ejemplo n.º 5
0
import cv2

from utils.opencv import showImages
"""Working directory: CupoyLearning"""

path = "data/image/lena.png"

# 以彩色圖片的方式載入
img = cv2.imread(path)

# 改變不同的 color space
# HSL: 色相,飽和度,亮度
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)

showImages(bgr=img, hsv=hsv)
Ejemplo n.º 6
0
print(model3.summary())
"""
Model: "model3"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d_9 (Conv2D)            (None, 576, 768, 3)       84        
=================================================================
Total params: 84
Trainable params: 84
Non-trainable params: 0
_________________________________________________________________
None
"""

# keras 在讀取檔案實是以 batch 的方式一次讀取多張,
# 但我們這裡只需要判讀一張,
# 所以透過 expand_dims() 函式來多擴張一個維度
batch_img = np.expand_dims(img, axis=0)
print(batch_img.shape)

output1 = model1.predict(batch_img)
# output1.shape = (1, 576, 768, 3)

output3 = model3.predict(batch_img)
# output3.shape = (1, 576, 768, 3)

img1 = np.squeeze(output1, axis=0)
img3 = np.squeeze(output3, axis=0)
showImages(img=img, img1=img1, img3=img3)
Ejemplo n.º 7
0
# 建立 SIFT 物件
sift = cv2.xfeatures2d_SIFT.create()

# 偵測並計算 SIFT 特徵 (keypoints 關鍵點, descriptor 128 維敘述子)
kp_query, des_query = sift.detectAndCompute(query, None)
kp_target, des_target = sift.detectAndCompute(target, None)

"""
基於 SIFT 特徵的暴力比對

* D.Lowe ratio test
* knn 比對
"""

# 建立 Brute-Force Matching 物件
bf = cv2.BFMatcher(cv2.NORM_L2)

# 以 knn 方式暴力比對特徵
matches = bf.knnMatch(des_query, des_target, k=2)

# 透過 D.Lowe ratio test 排除不適合的配對
candidate = []
for m, n in matches:
    if m.distance < 0.75 * n.distance:
        candidate.append([m])

# 顯示配對結果
dst = cv2.drawMatchesKnn(query, kp_query, target, kp_target, candidate, None, flags=2)

showImages(dst=dst)
Ejemplo n.º 8
0
img = cv2.imread(path)

# 轉為灰階圖片
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 建立 SIFT 物件
"""
如果要透過 OpenCV 使用 SIFT 的話必須要額外安裝擴充的函式庫

為了避免版本問題,我們會指定安裝版本

pip install opencv-contrib-python==3.4.2.16

# 處理權限問題: ERROR: Could not install packages due to an EnvironmentError: [WinError 5] 存取被拒。
pip install --user opencv-contrib-python==3.4.2.16
"""
sift = cv2.xfeatures2d.SIFT_create()

# 取得 SIFT 關鍵點位置
# keypoints = sift.detect(gray, None)
keypoints, features = sift.detectAndCompute(gray, None)
# type(keypoints): list
# #keypoints = 1098
# type(keypoints[0]): cv2.KeyPoint

kp0 = keypoints[0]

# 畫圖 + 顯示圖片
img_show = cv2.drawKeypoints(gray, keypoints, img.copy())
showImages(gray=gray, img_show=img_show)
Ejemplo n.º 9
0
"""

path = "data/image/lena.png"
img = cv2.imread(path)

"""
上下翻轉圖片
"""

# 水平翻轉 (horizontal)
horizontal_flip = img[:, ::-1, :]

# 垂直翻轉 (vertical)
vertical_flip = img[::-1, :, :]

showImages(img=img, horizontal_flip=horizontal_flip, vertical_flip=vertical_flip)

"""
縮放圖片

放大
我們先透過縮小圖片去壓縮原有圖片保有的資訊,再放大比較不同方法之間的速度與圖片品質
"""

# 將圖片縮小成原本的 20%
small = cv2.resize(img.copy(), None, fx=0.2, fy=0.2)

# 將圖片放大為"小圖片"的 8 倍大 = 原圖的 1.6 倍大
fx, fy = 8, 8

# 鄰近差值 scale + 計算花費時間
Ejemplo n.º 10
0
"""
# 把左上跟右下轉為矩陣型式
box = np.array((left_top, right_bottom), dtype=np.float32)

# 做矩陣乘法可以使用 `np.dot`, 為了做矩陣乘法, M_scale 需要做轉置之後才能相乘
homo_coor_result = np.dot(M.T, box)
homo_coor_result = homo_coor_result.astype('uint8')

scale_point1 = tuple(homo_coor_result[0])
scale_point2 = tuple(homo_coor_result[1])
print('origin point1={}, origin point2={}'.format(left_top, right_bottom))
print('resize point1={}, resize point2={}'.format(scale_point1, scale_point2))

# 畫圖
cv2.rectangle(small, scale_point1, scale_point2, (0, 0, 255), 3)
showImages(dst=small)
"""
Hint: 矩形
"""

img_rect = img.copy()
cv2.rectangle(
    # 圖片
    img_rect,
    # 左上角
    (60, 40),
    # 右下角
    (420, 510),
    # 顏色
    (0, 0, 255),
    # 線的粗細(若為 -1 則填滿整個矩形)
Ejemplo n.º 11
0
lower_saturation[..., -1] = np.clip(lower_saturation[..., -1] - change_percentage, 0.0, 1.0) * 255.0
lower_saturation[..., -1] = np.int8(lower_saturation[..., -1])

# 在 HLS color space 增加飽和度
higher_saturation = hls.astype('float32').copy() / 255.0
higher_saturation[..., -1] = np.clip(higher_saturation[..., -1] + change_percentage, 0.0, 1.0) * 255.0
higher_saturation[..., -1] = np.int8(higher_saturation[..., -1])

# 轉換
lower_saturation = cv2.cvtColor(lower_saturation, cv2.COLOR_HLS2BGR)
higher_saturation = cv2.cvtColor(higher_saturation, cv2.COLOR_HLS2BGR)

# 組合圖片 + 顯示圖片
img_hls_change = np.hstack((img, lower_saturation, higher_saturation))

showImages(hls_change=img_hls_change)

"""
直方圖均衡
"""

# case 1: 把彩圖拆開對每個 channel 個別做直方圖均衡再組合起來
equal_hist = img.copy()
equal_hist[..., 0] = cv2.equalizeHist(equal_hist[..., 0])
equal_hist[..., 1] = cv2.equalizeHist(equal_hist[..., 1])
equal_hist[..., 2] = cv2.equalizeHist(equal_hist[..., 2])
showImages(img=img, equal_hist0=equal_hist)

hls_equal_hist = cv2.cvtColor(img.copy(), cv2.COLOR_BGR2HLS)
hls_equal_hist[..., 2] = cv2.equalizeHist(hls_equal_hist[..., 2])
showImages(hls=hls, hls_equal_hist=hls_equal_hist)
Ejemplo n.º 12
0
import cv2

from utils.opencv import showImages
"""Working directory: CupoyLearning"""

path = "data/image/lena.png"

# 以彩色圖片的方式載入
img = cv2.imread(path)

# 以灰階圖片的方式載入
gray = cv2.imread(path, cv2.IMREAD_GRAYSCALE)

showImages(bgr=img, gray=gray)
Ejemplo n.º 13
0
points = df[df.columns[:-1]].values

# 轉換為 float
points = points.astype(np.float32)

# normalize 坐標值
points = points / 96

print("圖像資料:", imgs.shape)
print("關鍵點資料:", points.shape)
# 圖像資料: (2140, 96, 96)
# 關鍵點資料: (2140, 30)

sample_img = imgs[0]
sample_points = points[0]

n_image, height, width = imgs.shape

points *= width
points = np.int(width)

n_coord = int(len(sample_points) / 2)

for i in range(n_coord):
    cv2.circle(sample_img, (sample_points[i], sample_points[i + 1]),
               3,
               color=(0, 0, 255))

sample_img = cv2.resize(sample_img, (400, 400), interpolation=cv2.INTER_CUBIC)
showImages(sample_img=sample_img)