Ejemplo n.º 1
0
class Agent():
    """Interacts with and learns from the environment."""
    
    def __init__(self, state_size, action_size, random_seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size, random_seed).to(device)
        self.actor_target = Actor(state_size, action_size, random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(), lr=LR_ACTOR)

        # Critic Network (w/ Target Network)
        self.critic_local = Critic(state_size, action_size, random_seed).to(device)
        self.critic_target = Critic(state_size, action_size, random_seed).to(device)
        self.critic_optimizer = optim.Adam(self.critic_local.parameters(), lr=LR_CRITIC, weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OUNoise(action_size)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE, random_seed)
    
    def step(self, states, actions, rewards, next_states, dones):
        """Save experience in replay memory, and use random sample from buffer to learn."""
        # Save experience / reward
        for state, action, reward, next_state, done in zip(states, actions, rewards, next_states, dones):
            self.memory.add(state, action, reward, next_state, done) 

        # Learn, if enough samples are available in memory
        if len(self.memory) > BATCH_SIZE:
            experiences = self.memory.sample()
            self.learn(experiences, GAMMA)

    def act(self, state, add_noise=True):
        """Returns actions for given state as per current policy."""
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()
        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()
        if add_noise:
            action += self.noise.sample()
        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self, experiences, gamma):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        Params
        ======
            experiences (Tuple[torch.Tensor]): tuple of (s, a, r, s', done) tuples 
            gamma (float): discount factor
        """
        states, actions, rewards, next_states, dones = experiences

        # ---------------------------- update critic ---------------------------- #
        # Get predicted next-state actions and Q values from target models
        actions_next = self.actor_target(next_states)
        Q_targets_next = self.critic_target(next_states, actions_next)
        # Compute Q targets for current states (y_i)
        Q_targets = rewards + (gamma * Q_targets_next * (1 - dones))
        # Compute critic loss
        Q_expected = self.critic_local(states, actions)
        critic_loss = F.mse_loss(Q_expected, Q_targets)
        # Minimize the loss
        self.critic_optimizer.zero_grad()
        critic_loss.backward()
        self.critic_optimizer.step()

        # ---------------------------- update actor ---------------------------- #
        # Compute actor loss
        actions_pred = self.actor_local(states)
        actor_loss = -self.critic_local(states, actions_pred).mean()
        # Minimize the loss
        self.actor_optimizer.zero_grad()
        actor_loss.backward()
        self.actor_optimizer.step()

        # ----------------------- update target networks ----------------------- #
        self.soft_update(self.critic_local, self.critic_target, TAU)
        self.soft_update(self.actor_local, self.actor_target, TAU)                     

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(), local_model.parameters()):
            target_param.data.copy_(tau*local_param.data + (1.0-tau)*target_param.data)
            
    def save_models(self):
        torch.save(self.actor_local.state_dict(), actor_solved_model)
        torch.save(self.critic_local.state_dict(), critic_solved_model)
Ejemplo n.º 2
0
class Agent():
    """Interacts with and learns from the environment."""
    def __init__(self, state_size, action_size, random_seed):
        """Initialize an Agent object.
        
        Params
        ======
            state_size (int): dimension of each state
            action_size (int): dimension of each action
            random_seed (int): random seed
        """
        self.state_size = state_size
        self.action_size = action_size
        self.seed = random.seed(random_seed)

        # Actor Network (w/ Target Network)
        self.actor_local = Actor(state_size, action_size,
                                 random_seed).to(device)
        self.actor_target = Actor(state_size, action_size,
                                  random_seed).to(device)
        self.actor_optimizer = optim.Adam(self.actor_local.parameters(),
                                          lr=LR_ACTOR)

        # Critic Network 1 (w/ Target Network1)
        self.critic1_local = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic1_target = Critic(state_size, action_size,
                                     random_seed).to(device)
        self.critic1_optimizer = optim.Adam(self.critic1_local.parameters(),
                                            lr=LR_CRITIC,
                                            weight_decay=WEIGHT_DECAY)

        # Critic Network 2 (w/ Target Network2)
        self.critic2_local = Critic(state_size, action_size,
                                    random_seed).to(device)
        self.critic2_target = Critic(state_size, action_size,
                                     random_seed).to(device)
        self.critic2_optimizer = optim.Adam(self.critic2_local.parameters(),
                                            lr=LR_CRITIC,
                                            weight_decay=WEIGHT_DECAY)

        # Noise process
        self.noise = OUNoise(action_size)

        # Replay memory
        self.memory = ReplayBuffer(action_size, BUFFER_SIZE, BATCH_SIZE,
                                   random_seed)

        # Initialize time step (for updating every UPDATE_EVERY and LEARN_EVERY steps)
        self.t_step = 0

    def step(self, states, actions, rewards, next_states, dones):
        """Save experience in replay memory."""
        for state, action, reward, next_state, done in zip(
                states, actions, rewards, next_states, dones):
            self.memory.add(state, action, reward, next_state, done)

        # Learn, if enough samples are available in memory
        if len(self.memory) > BATCH_SIZE:
            self.learn()

    def act(self, state):
        """Returns actions for given states as per current policy."""
        state = torch.from_numpy(state).float().to(device)
        self.actor_local.eval()

        with torch.no_grad():
            action = self.actor_local(state).cpu().data.numpy()
        self.actor_local.train()

        action += self.noise.sample()

        return np.clip(action, -1, 1)

    def reset(self):
        self.noise.reset()

    def learn(self):
        """Update policy and value parameters using given batch of experience tuples.
        Q_targets = r + γ * critic_target(next_state, actor_target(next_state))
        where:
            actor_target(state) -> action
            critic_target(state, action) -> Q-value
        """
        self.t_step += 1
        states, actions, rewards, next_states, dones = self.memory.sample()

        # ---------------------------- update critic ---------------------------- #
        # Target Policy Smoothing Regularization: add a small amount of clipped random noises to the selected action
        if POLICY_NOISE > 0.0:
            noise = torch.empty_like(actions).data.normal_(
                0, POLICY_NOISE).to(device)
            noise = noise.clamp(-POLICY_NOISE_CLIP, POLICY_NOISE_CLIP)
            # Get predicted next-state actions and Q values from target models
            actions_next = (self.actor_target(next_states) + noise).clamp(
                -1., 1.)
        else:
            # Get predicted next-state actions and Q values from target models
            actions_next = self.actor_target(next_states)

        # Error Mitigation
        Q1_target = self.critic1_target(next_states, actions_next)
        Q2_target = self.critic2_target(next_states, actions_next)
        Q_targets_next = torch.min(Q1_target, Q2_target)

        # Compute Q targets for current states (y_i)
        Q_targets = rewards + dones * GAMMA * Q_targets_next

        # Compute critic1 loss
        Q1_expected = self.critic1_local(states, actions)
        critic1_loss = F.mse_loss(Q1_expected, Q_targets)
        # Minimize the loss
        self.critic1_optimizer.zero_grad()
        critic1_loss.backward(retain_graph=True)
        torch.nn.utils.clip_grad_norm_(self.critic1_local.parameters(), 1)
        self.critic1_optimizer.step()

        # Compute critic2 loss
        Q2_expected = self.critic2_local(states, actions)
        critic2_loss = F.mse_loss(Q2_expected, Q_targets)
        # Minimize the loss
        self.critic2_optimizer.zero_grad()
        critic2_loss.backward(retain_graph=True)
        torch.nn.utils.clip_grad_norm_(self.critic2_local.parameters(), 1)
        self.critic2_optimizer.step()

        # Delayed Policy Updates
        if self.t_step % UPDATE_ACTOR_EVERY == 0:
            # ---------------------------- update actor ---------------------------- #
            # Compute actor loss
            actions_pred = self.actor_local(states)
            actor_loss = -self.critic1_local(states, actions_pred).mean()
            # Minimize the loss
            self.actor_optimizer.zero_grad()
            actor_loss.backward()
            self.actor_optimizer.step()

            # ----------------------- update target networks ----------------------- #
            self.soft_update(self.critic1_local, self.critic1_target, TAU)
            self.soft_update(self.critic2_local, self.critic2_target, TAU)
            self.soft_update(self.actor_local, self.actor_target, TAU)

    def soft_update(self, local_model, target_model, tau):
        """Soft update model parameters.
        θ_target = τ*θ_local + (1 - τ)*θ_target
        
        Params
        ======
            local_model: PyTorch model (weights will be copied from)
            target_model: PyTorch model (weights will be copied to)
            tau (float): interpolation parameter 
        """
        for target_param, local_param in zip(target_model.parameters(),
                                             local_model.parameters()):
            target_param.data.copy_(tau * local_param.data +
                                    (1.0 - tau) * target_param.data)

    def save_models(self):
        torch.save(self.actor_local.state_dict(), actor_solved_model)
        torch.save(self.critic1_local.state_dict(), critic1_solved_model)
        torch.save(self.critic2_local.state_dict(), critic2_solved_model)
Ejemplo n.º 3
0
class DDPGAgent():
    """Reinforcement Learning agent that learns using DDPG."""
    def __init__(self, task):
        self.task = task
        self.state_size = task.state_size
        self.action_size = task.action_size
        self.action_low = task.action_low
        self.action_high = task.action_high

        # Actor (Policy) Model
        self.actor_local = Actor(self.state_size, self.action_size, self.action_low, self.action_high)
        self.actor_target = Actor(self.state_size, self.action_size, self.action_low, self.action_high)

        # Critic (Value) Model
        self.critic_local = Critic(self.state_size, self.action_size)
        self.critic_target = Critic(self.state_size, self.action_size)

        # Initialize target model parameters with local model parameters
        self.critic_target.model.set_weights(self.critic_local.model.get_weights())
        self.actor_target.model.set_weights(self.actor_local.model.get_weights())

        # Noise process
        self.exploration_mu = .5 #0
        self.exploration_theta = 0.6 #0.15
        self.exploration_sigma = 0.3
        self.noise = OUNoise(self.action_size, self.exploration_mu, self.exploration_theta, self.exploration_sigma)

        # Replay memory
        self.buffer_size = 1000000
        self.batch_size = 64
        self.memory = ReplayBuffer(self.buffer_size, self.batch_size)

        # Algorithm parameters
        self.gamma = 0.99  # discount factor
        self.tau = 0.001  # for soft update of target parameters

        #Agent score parameters
        self.score=0.0
        self.best_score=-1e10
        self.worst_score=1e10

    def reset_episode(self):
        self.noise.reset()
        state = self.task.reset()
        self.last_state = state
        return state

    def step(self, action, reward, next_state, done):
         # Save experience / reward
        self.memory.add(self.last_state, action, reward, next_state, done)

        # Learn, if enough samples are available in memory
        if len(self.memory) > self.batch_size:
            experiences = self.memory.sample()
            self.learn(experiences)

        # Roll over last state and action
        self.last_state = next_state

    def act(self, states):
        """Returns actions for given state(s) as per current policy."""
        state = np.reshape(states, [-1, self.state_size])
        action = self.actor_local.model.predict(state)[0]
        return list(action + self.noise.sample())  # add some noise for exploration

    def learn(self, experiences):
        """Update policy and value parameters using given batch of experience tuples."""
        # Convert experience tuples to separate arrays for each element (states, actions, rewards, etc.)
        states = np.vstack([e.state for e in experiences if e is not None])
        actions = np.array([e.action for e in experiences if e is not None]).astype(np.float32).reshape(-1, self.action_size)
        rewards = np.array([e.reward for e in experiences if e is not None]).astype(np.float32).reshape(-1, 1)
        dones = np.array([e.done for e in experiences if e is not None]).astype(np.uint8).reshape(-1, 1)
        next_states = np.vstack([e.next_state for e in experiences if e is not None])

        # Get predicted next-state actions and Q values from target models
        #     Q_targets_next = critic_target(next_state, actor_target(next_state))
        actions_next = self.actor_target.model.predict_on_batch(next_states)
        Q_targets_next = self.critic_target.model.predict_on_batch([next_states, actions_next])

        # Compute Q targets for current states and train critic model (local)
        Q_targets = rewards + self.gamma * Q_targets_next * (1 - dones)
        self.critic_local.model.train_on_batch(x=[states, actions], y=Q_targets)

        # Train actor model (local)
        action_gradients = np.reshape(self.critic_local.get_action_gradients([states, actions, 0]), (-1, self.action_size))
        self.actor_local.train_fn([states, action_gradients, 1])  # custom training function

        # Soft-update target models
        self.soft_update(self.critic_local.model, self.critic_target.model)
        self.soft_update(self.actor_local.model, self.actor_target.model)

    def soft_update(self, local_model, target_model):
        """Soft update model parameters."""
        local_weights = np.array(local_model.get_weights())
        target_weights = np.array(target_model.get_weights())

        assert len(local_weights) == len(target_weights), "Local and target model parameters must have the same size"

        new_weights = self.tau * local_weights + (1 - self.tau) * target_weights
        target_model.set_weights(new_weights)