Ejemplo n.º 1
0
 def test_register_duplicate_id(self):
     register_sampler(
         "my_duplicate_sampler_id",
         sampler_class=MySampler,
     )
     # cannot have duplicate id
     with self.assertRaises(ValueError):
         register_sampler(
             "my_duplicate_sampler_id",
             sampler_class=MySampler,
         )
Ejemplo n.º 2
0
        elif self.args.engine == "4d":
            self.low, self.high = [
                [0, 0, -np.pi, -np.pi],
                [self.args.env.dim[0], self.args.env.dim[1], np.pi, np.pi],
            ]
        else:
            self.use_original_method = True

    @overrides
    def get_next_pos(self) -> Sampler.GetNextPosReturnType:
        # Random path
        if random.random() < self.args.goalBias:
            # goal bias
            p = self.goal_pos
        else:
            if self.use_original_method:
                p = self.random.get_random(self.random_method)
                p *= self.args.env.dim
            else:
                p = np.random.uniform(self.low, self.high)

        return p, self.report_success, self.report_fail


# start register
sampler_id = "random"

planner_registry.register_sampler(sampler_id,
                                  sampler_class=RandomPolicySampler)
# finish register
Ejemplo n.º 3
0
            if self.sampleCount % 20 == 0:
                pass
                self.prob_vector_normalized = np.copy(self.tree_vector)
                self.prob_vector_normalized = sp.ndimage.filters.gaussian_filter(
                    self.prob_vector_normalized, (8.0, 8.0), mode="reflect"
                )
                tree_vector_normalized = np.copy(self.tree_vector)
                tree_vector_normalized = sp.ndimage.filters.gaussian_filter(
                    self.tree_vector, (1.0, 1.0), mode="reflect"
                )

                self.prob_vector_normalized -= tree_vector_normalized
                self.prob_vector_normalized = np.clip(
                    self.prob_vector_normalized, 0, None
                )

                self.prob_vector_normalized /= self.prob_vector_normalized.sum()
            self.sampleCount += 1


# start register
sampler_id = "nearby_sampler"

planner_registry.register_sampler(
    sampler_id,
    sampler_class=likelihoodPolicySampler.LikelihoodPolicySampler,
    visualise_pygame_paint=likelihoodPolicySampler.pygame_likelihood_sampler_paint,
    visualise_pygame_paint_init=likelihoodPolicySampler.pygame_likelihood_sampler_paint_init,
)
# finish register
Ejemplo n.º 4
0
        internal :class:`samplers.randomPolicySampler.RandomPolicySampler`

        :param value: whether to use radian

        """
        self.use_radian = value
        self.randomSampler.use_radian = value

    @overrides
    def get_next_pos(self) -> Sampler.GetNextPosReturnType:
        """Get next sampled position"""
        # Random path
        while True:
            if random.random() < self.args.goalBias:
                # init/goal bias
                if self.args.planner.goal_tree_turn:
                    p = self.start_pos
                else:
                    p = self.goal_pos
            else:
                p = self.randomSampler.get_next_pos()[0]
            return p, self.report_success, self.report_fail


# start register
planner_registry.register_sampler(
    "birrt_sampler",
    sampler_class=BiRRTSampler,
)
# finish register
Ejemplo n.º 5
0
from overrides import overrides

from samplers.randomPolicySampler import RandomPolicySampler
from utils import planner_registry


class PRMSampler(RandomPolicySampler):
    r"""This sampler is basically the same as
    :class:`samplers.randomPolicySampler.RandomPolicySampler`, excepts we
    always overrides the goal bias epsilon :math:`\epsilon=0` as PRM could not
    utilise the benefit of goal bias.
    """
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

    @overrides
    def init(self, **kwargs):
        """The delayed **initialisation** method"""
        kwargs["goalBias"] = 0
        super().init(**kwargs)


# start register
sampler_id = "prm_sampler"

planner_registry.register_sampler(
    sampler_id,
    sampler_class=PRMSampler,
)
# finish register
Ejemplo n.º 6
0
        # rotate via surface
        ellipse_surface = pygame.Surface((b, a), pygame.SRCALPHA, 32).convert_alpha()
        try:
            pygame.draw.ellipse(ellipse_surface, (255, 0, 0, 80), r)
            pygame.draw.ellipse(
                ellipse_surface, Colour.black, r, int(2 * sampler.args.scaling)
            )
        except ValueError:
            # sometime it will fail to draw due to ellipse being too narrow
            pass
        # rotate
        ellipse_surface = pygame.transform.rotate(
            ellipse_surface, -angle * 180 / math.pi
        )
        # we need to offset the blitz based on the surface ceenter
        rcx, rcy = ellipse_surface.get_rect().center
        ellipse_x = sampler.xCenter[0] * sampler.args.scaling - rcx
        ellipse_y = sampler.xCenter[1] * sampler.args.scaling - rcy
        sampler.args.env.window.blit(ellipse_surface, (ellipse_x, ellipse_y))


# start register
sampler_id = "informed_sampler"

planner_registry.register_sampler(
    sampler_id,
    sampler_class=InformedSampler,
    visualise_pygame_paint=pygame_informed_sampler_paint,
)
# finish register
Ejemplo n.º 7
0
    for n in planner.root.nodes:
        if n.parent is not None:
            new_set = frozenset({n, n.parent})
            if new_set not in drawn_nodes_pairs:
                drawn_nodes_pairs.add(new_set)
                planner.args.env.draw_path(
                    planner.args.env.cc.get_eef_world_pos(n.pos),
                    planner.args.env.cc.get_eef_world_pos(n.parent.pos),
                    colour=c,
                )


# start register
sampler_id = "rrdt_sampler"

planner_registry.register_sampler(
    sampler_id,
    sampler_class=RRdTSampler,
    visualise_pygame_paint=pygame_rrdt_sampler_paint,
    visualise_pygame_paint_init=pygame_rrdt_sampler_paint_init,
)

planner_registry.register_planner(
    "rrdt",
    planner_class=RRdTPlanner,
    visualise_pygame_paint=pygame_rrdt_planner_paint,
    visualise_klampt_paint=klampt_rrdt_planner_paint,
    sampler_id=sampler_id,
)
# finish register
Ejemplo n.º 8
0
            self.report_success,
            self.report_fail,
        )

    @staticmethod
    def get_mouse_click_position(scaling):
        """Helper function to return the current position of the mouse pointer

        :param scaling: scaling factor ot be applied to the mouse position

        """
        import pygame

        while True:
            time.sleep(0.05)
            pygame.event.wait()
            if pygame.mouse.get_pressed()[0] == 1:  # Left mouse pressed
                pos = pygame.mouse.get_pos()
                pos = (int(pos[0] / scaling), int(pos[1] / scaling))
                return pos


# start register
sampler_id = "mouse"

planner_registry.register_sampler(
    sampler_id,
    sampler_class=MouseSampler,
)
# finish register
Ejemplo n.º 9
0
 def test_register_not_derived(self):
     with self.assertRaises(TypeError):
         register_sampler(
             "my_non_derived_sampler_id",
             sampler_class=DummyClass,
         )
Ejemplo n.º 10
0
 def test_register(self):
     register_sampler(
         "my_sampler_id",
         sampler_class=MySampler,
     )