Ejemplo n.º 1
0
def main(args, curr_dir):
    np.set_printoptions(precision=5, threshold=np.inf)
    logger.set_up_pyrklog(args.logfile)
    infile = importlib.import_module(args.infile)

    si = sim_info.SimInfo(timer=infile.ti,
                          components=infile.components,
                          iso=infile.fission_iso,
                          e=infile.spectrum,
                          n_precursors=infile.n_pg,
                          n_decay=infile.n_dg,
                          kappa=infile.kappa,
                          feedback=infile.feedback,
                          rho_ext=infile.rho_ext,
                          plotdir=args.plotdir)
    print_logo(curr_dir)
    # n_components = len(si.components)
    sol = solve(si=si, y=si.y, infile=infile)
    log_results(si)
    plotter.plot(sol, si)
    pyrklog.critical("\nSimulation succeeded.\n")
Ejemplo n.º 2
0
def main(args, curr_dir):
    np.set_printoptions(precision=5, threshold=np.inf)
    logger.set_up_pyrklog(args.logfile)
    infile = importlib.import_module(args.infile)

    si = sim_info.SimInfo(timer=infile.ti,
                          components=infile.components,
                          iso=infile.fission_iso,
                          e=infile.spectrum,
                          n_precursors=infile.n_pg,
                          n_decay=infile.n_dg,
                          kappa=infile.kappa,
                          feedback=infile.feedback,
                          rho_ext=infile.rho_ext,
                          plotdir=args.plotdir)
    print_logo(curr_dir)
    # n_components = len(si.components)
    sol = solve(si=si, y=si.y, infile=infile)
    log_results(si)
    plotter.plot(sol, si)
    pyrklog.critical("\nSimulation succeeded.\n")
Ejemplo n.º 3
0
	def plot_layer_output(self,plot_spec,plot_path,max_images=10):
		#default all nodes set to value 1
		#inp = numpy.random.random(self.conv_input_dim).astype(theano.config.floatX);
		batch_size = plot_spec['batch_size'];
		plot_path = plot_path +os.sep +'layer_%d'+os.sep +'batch_%d'+os.sep+'img_%d.png'
		for layer_idx in xrange(self.conv_layer_num):	
			img_plot_remaining = max_images;
			layer_out_fn = self.getLayerOutFunction(layer_idx);
			logger.info('Plotting the layer %d'%layer_idx);
			file_reader =read_dataset(plot_spec,pad_zeros=True)[0];
			while not file_reader.is_finish():
				for batch_index in xrange(file_reader.cur_frame_num/batch_size):
					s_idx = batch_index * batch_size; e_idx = s_idx + batch_size
					data = layer_out_fn(file_reader.feat[s_idx:e_idx])
					e_idx= min(file_reader.cur_frame_num - file_reader.num_pad_frames,s_idx+batch_size);
					img_plot_remaining = plot(data[s_idx:e_idx],plot_path,layer_idx,batch_index,img_plot_remaining);
					if img_plot_remaining == 0:
						break;
				if img_plot_remaining == 0:
					break;
				file_reader.read_next_partition_data(pad_zeros=True);
Ejemplo n.º 4
0
from timeit import timeit
from utils.line import Line
from utils.sorter import radixSort

# Little test to check if algorithm is working
#intList = getRandomRepeatingListWithRange(15, 100)
#print(f"Initial: {intList}")
#radixSort(intList)
#print(f"Final: {intList}")

# Change this value to switch from and to test mode
testMode = False
testDivisor = 100

counts = [10000, 20000, 40000, 70000, 100000, 500000]

if testMode:
    counts = [int(n / testDivisor) for n in counts]

numberOfTests = 1

randomLists = [getRandomList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: radixSort(list), number=numberOfTests)
    for list in randomLists
]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b')]
plot(lines, figname="products/radix_sort_graph.png")
Ejemplo n.º 5
0
from utils.plotter import plot
from utils.generator import getRandomList
from timeit import timeit
from utils.line import Line
from utils.sorter import countingSort

# Little test to check if algorithm is working
#list = getRandomList(25)
#print(list)
#countingSort(list)
#print(list)

# Change this value to switch from and to test mode
testMode = False
testDivisor = 100

counts = [10000, 20000, 40000, 70000, 100000, 500000]

if testMode:
    counts = [int(n / testDivisor) for n in counts]

randomLists = [getRandomList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: countingSort(list), number=1) for list in randomLists
]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b')]
plot(lines, figname="products/counting_sort_graph.png")
Ejemplo n.º 6
0
from utils.plotter import plot
from utils.generator import getRandomList, getDecrescentList
from timeit import timeit
from utils.line import Line
from utils.sorter import insertionSort

counts = [1000, 2000, 3000, 4000, 5000, 8000, 11000, 15000]

randomLists = [getRandomList(count) for count in counts]
worstLists = [getDecrescentList(count) for count in counts]

elapsedTimes = [timeit(lambda: insertionSort(list), number = 1) for list in randomLists]
worstElapsedTimes = [timeit(lambda: insertionSort(list), number = 1) for list in worstLists]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b'), Line((counts, worstElapsedTimes), "Pior caso", 'k')]
plot(lines, figname = "products/insertion_sort_graph.png")
Ejemplo n.º 7
0
counts = [10000, 20000, 40000, 70000, 100000, 500000]

if testMode:
    counts = [int(n / testDivisor) for n in counts]

numberOfTests = 1

randomLists = [getRandomList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: bucketSort(list), number=numberOfTests)
    for list in randomLists
]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b')]
plot(lines, "products/bucket_sort_graph.png")

bucketNumbers = [1, 10, 100, 1000, 10000, 100000]
bucketNumberTimes = [
    timeit(lambda: bucketSort(getRandomList(100000), bucketNumber),
           number=numberOfTests) for bucketNumber in bucketNumbers
]

lines = [
    Line((bucketNumbers, bucketNumberTimes), "Lista com 100000 elementos", 'b')
]
plot(lines, 'products/bucket_number_graph.png', 'Número de buckets')
print(
    "De acordo com as informações obtidas ao analisar o gráfico, sugiro uma quantidade de buckets igual ao tamanho da entrada, ou uma quantidade de buckets igual a 1% do tamanho da entrada."
)
Ejemplo n.º 8
0
import numpy as np
from samplers.affineinv import AffineInv 
from utils.plotter import plot

data = np.load('data.npy')
paramranges = np.asarray( [ [0.,10.],[0.,10.] ] )
n_walkers = 50
n_steps = 5000

af_sampler = AffineInv(data,paramranges) 
af_sampler.afinv(n_walkers,n_steps)

plot(500)
Ejemplo n.º 9
0
from utils.plotter import plot
from utils.generator import getRandomList
from timeit import timeit
from utils.line import Line
from utils.sorter import mergeSort

# Change this value to switch from and to test mode
testMode = False
testDivisor = 100

counts = [10000, 20000, 40000, 70000, 100000, 500000]

if testMode:
    counts = [int(n / testDivisor) for n in counts]

randomLists = [getRandomList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: mergeSort(list), number=1) for list in randomLists
]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b')]
plot(lines, figname="products/merge_sort_graph.png")
Ejemplo n.º 10
0
from utils.plotter import plot
from utils.generator import getRandomList, getDecrescentList
from timeit import timeit
from utils.line import Line
from utils.sorter import selectionSort

counts = [1000, 2000, 3000, 4000, 5000, 8000, 11000, 15000]

randomLists = [getRandomList(count) for count in counts]
worstLists = [getDecrescentList(count) for count in counts]

elapsedTimes = [timeit(lambda: selectionSort(list), number = 1) for list in randomLists]
worstElapsedTimes = [timeit(lambda: selectionSort(list), number = 1) for list in worstLists]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b'), Line((counts, worstElapsedTimes), "Pior caso", 'k')]
plot(lines, figname = "products/selection_sort_graph.png")
Ejemplo n.º 11
0
from utils.plotter import plot
from utils.generator import getRandomList
from timeit import timeit
from utils.line import Line
from utils.sorter import shellSort

# Little test to check if algorithm is working
# list = getRandomList(25)
# print(list)
# shellSort(list)
# print(list)

# Change this value to switch from and to test mode
testMode = False
testDivisor = 100

counts = [10000, 20000, 40000, 70000, 100000, 500000]

if testMode:
    counts = [int(n / testDivisor) for n in counts]

randomLists = [getRandomList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: shellSort(list), number=1) for list in randomLists
]

lines = [Line((counts, elapsedTimes), "Caso aleatório", 'b')]
plot(lines, figname="products/shell_sort_graph.png")
Ejemplo n.º 12
0
from utils.plotter import plot
from utils.generator import getRandomList, getDecrescentList
from timeit import timeit
from utils.line import Line
from utils.sorter import bubbleSort

counts = [1000, 2000, 3000, 4000, 5000, 8000, 11000, 15000]

randomLists = [getRandomList(count) for count in counts]
worstLists = [getDecrescentList(count) for count in counts]

elapsedTimes = [
    timeit(lambda: bubbleSort(list), number=1) for list in randomLists
]
worstElapsedTimes = [
    timeit(lambda: bubbleSort(list), number=1) for list in worstLists
]

lines = [
    Line((counts, elapsedTimes), "Caso aleatório", 'b'),
    Line((counts, worstElapsedTimes), "Pior caso", 'k')
]
plot(lines, figname="products/bubble_sort_graph.png")