Ejemplo n.º 1
0
def test_add_dummy_feature(n_samples, n_features):

    X = np.random.rand(n_samples, n_features)

    new_skratch = skratch.add_dummy_feature(X)
    new_sklearn = sklearn.add_dummy_feature(X)

    assert (new_sklearn == new_skratch).all()
Ejemplo n.º 2
0
    def fit(self, X, y):

        if self.fit_intercept:
            X = add_dummy_feature(X)

        self.coef_ = np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)

        return self.coef_
Ejemplo n.º 3
0
    def predict(self, X, weights=None):

        if self.fit_intercept:
            X = add_dummy_feature(X)

        if weights is None:
            weights = self.coef_

        return X.dot(weights)
Ejemplo n.º 4
0
    def _loss_gradient(self, X, y):

        features = X
        if self.fit_intercept:
            features = add_dummy_feature(features)

        prediction_loss_gradient = lambda weights: (self.predict(
            X, weights) - y).dot(features) / len(features)
        regularization_loss_gradient = lambda weights: self.regularizer.gradient(
            weights)

        return lambda weights: prediction_loss_gradient(
            weights) + regularization_loss_gradient(weights)
def get_X_y_weights(n_samples, n_features, fit_intercept):

    X = np.random.rand(n_samples, n_features)
    weights = np.random.rand(X.shape[1] + fit_intercept)
    X = StandardScaler().fit_transform(X)

    features = X
    if fit_intercept:
        features = add_dummy_feature(features)

    y = features.dot(weights)

    return X, y, weights
Ejemplo n.º 6
0
y[-1] -= 2

fig = plt.figure(figsize=(10, 10))

ax = fig.add_subplot(111)
ax.set_ylim([-2.5, 2.5])
ims = []

for weights_, new_loss in reg._fit(X, y):

    X_ = np.linspace(1.5 * MIN, 1.5 * MAX, n_samples)
    X_ = np.array([[x**i for i in range(1, degree + 1)] for x in X_.squeeze()])

    lines = []

    y_ = add_dummy_feature(X_).dot(weights_)

    not_noisy = np.array(
        [i for i in range(n_samples) if i not in noisy_instances])

    correct, = ax.plot(X[not_noisy, 0].squeeze(), y[not_noisy], '.g')
    # noise, = ax.plot(X[noisy_instances,0].squeeze(), y[noisy_instances], 'Xr')
    prediction, = ax.plot(X_[:, 0].squeeze(), y_, 'b')

    ax.legend([correct, prediction], ["correct", "prediction"])
    lines.append(prediction)
    lines.append(correct)

    ims.append(lines)

anim = animation.ArtistAnimation(fig,