Ejemplo n.º 1
0
    def process_one_frame(frame):
        if frame is None: print("No frame, check your camera")
        img_ori = frame
        img_fp = "camera.png"  # 随便给一个filename 反正之后用不到
        rects = face_detector(img_ori, 1)

        pts_res = []
        Ps = []  # Camera matrix collection
        poses = []  # pose collection, [todo: validate it]
        vertices_lst = []  # store multiple face vertices
        ind = 0
        suffix = get_suffix(img_fp)

        for i in range(len(rects)):
            if i != 0: break  # 这里只检测第一个脸
            rect = rects[i]
            # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
            # - use landmark for cropping
            pts = face_regressor(img_ori, rect).parts()
            pts = np.array([[pt.x, pt.y] for pt in pts]).T
            roi_box = parse_roi_box_from_landmark(pts)
            img = crop_img(img_ori, roi_box)
            # forward: one step
            img = cv2.resize(img,
                             dsize=(STD_SIZE, STD_SIZE),
                             interpolation=cv2.INTER_LINEAR)
            input = transform(img).unsqueeze(0)
            with torch.no_grad():
                if use_gpu:
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)
            # 68 pts
            pts68 = predict_68pts(param, roi_box)
            # two-step for more accurate bbox to crop face
            if use_two_step_bbox_init:
                roi_box = parse_roi_box_from_landmark(pts68)
                img_step2 = crop_img(img_ori, roi_box)
                img_step2 = cv2.resize(img_step2,
                                       dsize=(STD_SIZE, STD_SIZE),
                                       interpolation=cv2.INTER_LINEAR)
                input = transform(img_step2).unsqueeze(0)
                with torch.no_grad():
                    if use_gpu:
                        input = input.cuda()
                    param = model(input)
                    param = param.squeeze().cpu().numpy().flatten().astype(
                        np.float32)
                pts68 = predict_68pts(param, roi_box)
            pts_res.append(pts68)
            P, pose = parse_pose(param)
            Ps.append(P)
            poses.append(pose)
            # dense face 3d vertices
            vertices = predict_dense(param, roi_box)
            vertices_lst.append(vertices)
            if is_dump_to_ply:
                dump_to_ply(
                    vertices, tri,
                    '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
            if is_dump_vertex:
                dump_vertex(
                    vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''),
                                                 ind))
            if is_dump_pts:
                wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, pts68, fmt='%.3f')
                print('Save 68 3d landmarks to {}'.format(wfp))
            if is_dump_roi_box:
                wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, roi_box, fmt='%.3f')
                print('Save roi box to {}'.format(wfp))
            if is_dump_paf:
                wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''),
                                                 ind)
                wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''),
                                                   ind)
                paf_feature = gen_img_paf(img_crop=img,
                                          param=param,
                                          kernel_size=paf_size)
                cv2.imwrite(wfp_paf, paf_feature)
                cv2.imwrite(wfp_crop, img)
                print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
            if is_dump_obj:
                wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
                colors = get_colors(img_ori, vertices)
                write_obj_with_colors(wfp, vertices, tri, colors)
                print('Dump obj with sampled texture to {}'.format(wfp))
            ind += 1
        if is_dump_pose:
            # P, pose = parse_pose(param)  # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
            img_pose = plot_pose_box(img_ori, Ps, pts_res)
            wfp = img_fp.replace(suffix, '_pose.jpg')
            cv2.imwrite(wfp, img_pose)
            print('Dump to {}'.format(wfp))
        if is_dump_depth:
            wfp = img_fp.replace(suffix, '_depth.png')
            # depths_img = get_depths_image(img_ori, vertices_lst, tri-1)  # python version
            depths_img = cget_depths_image(img_ori, vertices_lst,
                                           tri - 1)  # cython version
            cv2.imwrite(wfp, depths_img)
            print('Dump to {}'.format(wfp))
        if is_dump_pncc:
            wfp = img_fp.replace(suffix, '_pncc.png')
            pncc_feature = cpncc(img_ori, vertices_lst,
                                 tri - 1)  # cython version
            cv2.imwrite(
                wfp,
                pncc_feature[:, :, ::-1])  # cv2.imwrite will swap RGB -> BGR
            print('Dump to {}'.format(wfp))
        if is_dump_res:
            draw_landmarks(img_ori,
                           pts_res,
                           wfp=img_fp.replace(suffix, '_3DDFA.jpg'),
                           show_flg=show_landmarks_fig)

        # 下面这一句将原始图像关掉
        img_ori = np.ones_like(img_ori) * 255

        img_pose = plot_pose_box(img_ori, Ps, pts_res)
        draw_landmarks_opencv(img_pose, pts_res)
        cv2.imshow("pose", img_pose)
Ejemplo n.º 2
0
def main(args):
    # 1. load pre-tained model
    checkpoint_fp = 'models/phase1_wpdc_vdc.pth.tar'
    arch = 'mobilenet_1'

    checkpoint = torch.load(
        checkpoint_fp, map_location=lambda storage, loc: storage)['state_dict']
    model = getattr(mobilenet_v1, arch)(
        num_classes=62)  # 62 = 12(pose) + 40(shape) +10(expression)

    model_dict = model.state_dict()
    # because the model is trained by multiple gpus, prefix module should be removed
    for k in checkpoint.keys():
        model_dict[k.replace('module.', '')] = checkpoint[k]
    model.load_state_dict(model_dict)
    if args.mode == 'gpu':
        cudnn.benchmark = True
        model = model.cuda()
    model.eval()

    # 2. load dlib model for face detection and landmark used for face cropping
    if args.dlib_landmark:
        dlib_landmark_model = 'models/shape_predictor_68_face_landmarks.dat'
        face_regressor = dlib.shape_predictor(dlib_landmark_model)
    if args.dlib_bbox:
        face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    for img_fp in args.files:
        img_ori = cv2.imread(img_fp)
        if args.dlib_bbox:
            rects = face_detector(img_ori, 1)
        else:
            rects = []

        if len(rects) == 0:
            rects = dlib.rectangles()
            rect_fp = img_fp + '.bbox'
            try:
                lines = open(rect_fp).read().strip().split('\n')[1:]
            except FileNotFoundError:
                print('Cannot load bbox file')
                continue
            for l in lines:
                l, r, t, b = [int(_) for _ in l.split(' ')[1:]]
                rect = dlib.rectangle(l, r, t, b)
                rects.append(rect)

        pts_res = []
        Ps = []  # Camera matrix collection
        poses = []  # pose collection, [todo: validate it]
        vertices_lst = []  # store multiple face vertices
        ind = 0
        suffix = get_suffix(img_fp)
        for rect in rects:
            # whether use dlib landmark to crop image, if not, use only face bbox to calc roi bbox for cropping
            if args.dlib_landmark:
                # - use landmark for cropping
                pts = face_regressor(img_ori, rect).parts()
                pts = np.array([[pt.x, pt.y] for pt in pts]).T
                roi_box = parse_roi_box_from_landmark(pts)
            else:
                # - use detected face bbox
                bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
                roi_box = parse_roi_box_from_bbox(bbox)

            img = crop_img(img_ori, roi_box)

            # forward: one step
            img = cv2.resize(img,
                             dsize=(STD_SIZE, STD_SIZE),
                             interpolation=cv2.INTER_LINEAR)
            input = transform(img).unsqueeze(0)
            with torch.no_grad():
                if args.mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            # 68 pts
            pts68 = predict_68pts(param, roi_box)

            # two-step for more accurate bbox to crop face
            if args.bbox_init == 'two':
                roi_box = parse_roi_box_from_landmark(pts68)
                img_step2 = crop_img(img_ori, roi_box)
                img_step2 = cv2.resize(img_step2,
                                       dsize=(STD_SIZE, STD_SIZE),
                                       interpolation=cv2.INTER_LINEAR)
                input = transform(img_step2).unsqueeze(0)
                with torch.no_grad():
                    if args.mode == 'gpu':
                        input = input.cuda()
                    param = model(input)
                    param = param.squeeze().cpu().numpy().flatten().astype(
                        np.float32)

                pts68 = predict_68pts(param, roi_box)

            pts_res.append(pts68)
            P, pose = parse_pose(param)
            Ps.append(P)
            poses.append(pose)

            # dense face 3d vertices
            if args.dump_ply or args.dump_vertex or args.dump_depth or args.dump_pncc or args.dump_obj:
                vertices = predict_dense(param, roi_box)
                vertices_lst.append(vertices)
            if args.dump_ply:
                dump_to_ply(
                    vertices, tri,
                    '{}_{}.ply'.format(img_fp.replace(suffix, ''), ind))
            if args.dump_vertex:
                dump_vertex(
                    vertices, '{}_{}.mat'.format(img_fp.replace(suffix, ''),
                                                 ind))
            if args.dump_pts:
                wfp = '{}_{}.txt'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, pts68, fmt='%.3f')
                print('Save 68 3d landmarks to {}'.format(wfp))
            if args.dump_roi_box:
                wfp = '{}_{}.roibox'.format(img_fp.replace(suffix, ''), ind)
                np.savetxt(wfp, roi_box, fmt='%.3f')
                print('Save roi box to {}'.format(wfp))
            if args.dump_paf:
                wfp_paf = '{}_{}_paf.jpg'.format(img_fp.replace(suffix, ''),
                                                 ind)
                wfp_crop = '{}_{}_crop.jpg'.format(img_fp.replace(suffix, ''),
                                                   ind)
                paf_feature = gen_img_paf(img_crop=img,
                                          param=param,
                                          kernel_size=args.paf_size)

                cv2.imwrite(wfp_paf, paf_feature)
                cv2.imwrite(wfp_crop, img)
                print('Dump to {} and {}'.format(wfp_crop, wfp_paf))
            if args.dump_obj:
                wfp = '{}_{}.obj'.format(img_fp.replace(suffix, ''), ind)
                colors = get_colors(img_ori, vertices)
                write_obj_with_colors(wfp, vertices, tri, colors)
                print('Dump obj with sampled texture to {}'.format(wfp))
            ind += 1

        if args.dump_pose:
            # P, pose = parse_pose(param)  # Camera matrix (without scale), and pose (yaw, pitch, roll, to verify)
            img_pose = plot_pose_box(img_ori, Ps, pts_res)
            wfp = img_fp.replace(suffix, '_pose.jpg')
            cv2.imwrite(wfp, img_pose)
            print('Dump to {}'.format(wfp))
        if args.dump_depth:
            wfp = img_fp.replace(suffix, '_depth.png')
            # depths_img = get_depths_image(img_ori, vertices_lst, tri-1)  # python version
            depths_img = cget_depths_image(img_ori, vertices_lst,
                                           tri - 1)  # cython version
            cv2.imwrite(wfp, depths_img)
            print('Dump to {}'.format(wfp))
        if args.dump_pncc:
            wfp = img_fp.replace(suffix, '_pncc.png')
            pncc_feature = cpncc(img_ori, vertices_lst,
                                 tri - 1)  # cython version
            cv2.imwrite(
                wfp,
                pncc_feature[:, :, ::-1])  # cv2.imwrite will swap RGB -> BGR
            print('Dump to {}'.format(wfp))
        if args.dump_res:
            draw_landmarks(img_ori,
                           pts_res,
                           wfp=img_fp.replace(suffix, '_3DDFA.jpg'),
                           show_flg=args.show_flg)
Ejemplo n.º 3
0
def classify(model, inputs):
    in_img = inputs['photo']
    img_ori = np.array(in_img)
    img_fp = 'samples/test1.jpg'

    face_detector = dlib.get_frontal_face_detector()

    # 3. forward
    tri = sio.loadmat('visualize/tri.mat')['tri']
    transform = transforms.Compose(
        [ToTensorGjz(), NormalizeGjz(mean=127.5, std=128)])
    #print(transform)
    rects = face_detector(img_ori, 1)

    pts_res = []
    Ps = []  # Camera matrix collection
    poses = []  # pose collection, [todo: validate it]
    vertices_lst = []  # store multiple face vertices
    ind = 0
    suffix = get_suffix(img_fp)
    for rect in rects:
        # - use detected face bbox
        bbox = [rect.left(), rect.top(), rect.right(), rect.bottom()]
        roi_box = parse_roi_box_from_bbox(bbox)

        img = crop_img(img_ori, roi_box)

        # forward: one step
        img = cv2.resize(img,
                         dsize=(STD_SIZE, STD_SIZE),
                         interpolation=cv2.INTER_LINEAR)
        input = transform(img).unsqueeze(0)
        print(input)
        with torch.no_grad():

            if mode == 'gpu':
                input = input.cuda()

            param = model(input)
            param = param.squeeze().cpu().numpy().flatten().astype(np.float32)

        # 68 pts
        pts68 = predict_68pts(param, roi_box)

        # two-step for more accurate bbox to crop face
        if bbox_init == 'two':
            roi_box = parse_roi_box_from_landmark(pts68)
            img_step2 = crop_img(img_ori, roi_box)
            img_step2 = cv2.resize(img_step2,
                                   dsize=(STD_SIZE, STD_SIZE),
                                   interpolation=cv2.INTER_LINEAR)
            input = transform(img_step2).unsqueeze(0)
            with torch.no_grad():
                if mode == 'gpu':
                    input = input.cuda()
                param = model(input)
                param = param.squeeze().cpu().numpy().flatten().astype(
                    np.float32)

            pts68 = predict_68pts(param, roi_box)

        pts_res.append(pts68)
        P, pose = parse_pose(param)
        Ps.append(P)
        poses.append(pose)

        vertices = predict_dense(param, roi_box)
        vertices_lst.append(vertices)
        ind += 1

    pncc_feature = cpncc(img_ori, vertices_lst, tri - 1)
    output = pncc_feature[:, :, ::-1]
    print(type(output))
    pilImg = transforms.ToPILImage()(np.uint8(output))

    return {"image": pilImg}