Ejemplo n.º 1
0
    def _tf1_helper(self, wsp, nameold, vrs):
        """
        helper function that takes all vars in a string and replaces them by their
        value in the fit

        NOTE: only works if there is only dependence on the
        mean value of ONE binning variable (otherwise it wouldn't be a tf1)
        """
        v_names = vrs.split(', ')

        listp = [('{}'.format(elm), '[' + str(i) + ']')
                 for i, elm in enumerate(v_names)]
        name = replace_all(nameold, listp)

        mean_rgx = re.compile(r'<(\w+)>')

        #TODO: error message if more than one element in this set?
        mean_var = list(set(mean_rgx.findall(name)))
        if len(mean_var) != 1:
            # Only warning here. Normally the TF1 constructor should emit
            # another error message because the function doesn't compile below
            logging.warning('Found dependency on more than one variable')

        mean_var = mean_var[0]
        name = name.replace('<{}>'.format(mean_var), 'x')

        f1 = r.TF1(create_random_str(), name,
                   self.binning[self.bin_vars.index(mean_var)][0],
                   self.binning[self.bin_vars.index(mean_var)][-1])
        for i, elm in enumerate(v_names):
            f1.SetParameter(i, get_var(wsp, elm).getVal())
            f1.SetParError(i, get_var(wsp, elm).getError())
            f1.SetParName(i, elm)

        return f1, mean_var
Ejemplo n.º 2
0
def create_workspace(model,
                     datafile,
                     binvar,
                     binning,
                     massrange,
                     fitfile,
                     weights=None):
    """
    Create the workspace with the data already imported and the model defined,
    also in charge of writing the bin info json file
    """
    wsp = r.RooWorkspace('ws_mass_fit')

    massrange = [float(v) for v in massrange.split(',')]

    # load the data and apply the mass selection of the fitting range immediately
    bin_var = parse_func_var(binvar)  # necessary for loading
    variables = [model.mname, bin_var[0]]
    if weights is not None:
        variables.append(weights)
    data = apply_selections(get_dataframe(datafile, columns=variables),
                            select_bin(model.mname, *massrange))

    costh_bins, costh_means = get_costh_bins(binning, bin_var, data)
    create_bin_info_json(fitfile.replace('.root', '_bin_sel_info.json'),
                         costh_bins, costh_means, bin_var[0], datafile)

    # Create the variables in the workspace
    try_factory(wsp, '{}[{}, {}]'.format(model.mname, *massrange))
    if 'abs' in bin_var[1].__name__:
        try_factory(
            wsp, '{}[{}, {}]'.format(bin_var[0], -np.max(costh_bins),
                                     np.max(costh_bins)))
    else:
        try_factory(
            wsp, '{}[{}, {}]'.format(bin_var[0], np.min(costh_bins),
                                     np.max(costh_bins)))
    dset_vars = r.RooArgSet(get_var(wsp, model.mname),
                            get_var(wsp, bin_var[0]))

    tree = array2tree(data.to_records(index=False))
    if weights is not None:
        try_factory(wsp, '{}[0, 1e5]'.format(weights))
        dataset = r.RooDataSet('full_data', 'full data sample', tree,
                               dset_vars, '', weights)
    else:
        dataset = r.RooDataSet('full_data', 'full data sample', tree,
                               dset_vars)

    ws_import(wsp, dataset)

    return wsp, costh_bins
Ejemplo n.º 3
0
    def _pull_plot(self, wsp, frame, publication):
        """
        Make the frame containing the pulls
        """
        pulls = frame.pullHist('data_hist', 'full_pdf_curve', True)
        pulls.SetMarkerSize(0.8)
        pull_frame = get_var(wsp, self.fit_var).frame()
        if publication:
            pull_frame.addPlotable(pulls, 'PEX0')
            pulls.SetMarkerSize(0.7)
            pull_frame.GetXaxis().SetTitle(YLABELS.get('chicMass'))
        else:
            pull_frame.addPlotable(pulls, 'P')

        pull_frame.SetTitle("")
        pull_frame.GetYaxis().SetTitle("pull")
        if publication:
            pull_frame.GetXaxis().SetTitleSize(0.12)
            pull_frame.GetYaxis().SetTitleSize(0.12)
            pull_frame.GetXaxis().SetLabelSize(0.12)
            pull_frame.GetYaxis().SetLabelSize(0.12)
            pull_frame.GetYaxis().SetTitleOffset(0.625)
            pull_frame.GetYaxis().SetRangeUser(-3.99, 3.99)
            pull_frame.GetYaxis().SetNdivisions(507)
        else:
            pull_frame.GetXaxis().SetTitleSize(0.08)
            pull_frame.GetYaxis().SetTitleSize(0.08)
            pull_frame.GetXaxis().SetLabelSize(0.08)
            pull_frame.GetYaxis().SetLabelSize(0.08)
            pull_frame.GetYaxis().SetTitleOffset(0.4)
            pull_frame.GetYaxis().SetRangeUser(-5.99, 5.99)

        return pull_frame
Ejemplo n.º 4
0
    def plot_fit_params(self, wsp):
        """
        Plot all free fit parameters onto canvas
        Args:
        wsp (ROOT.RooWorkspace): workspace where the model is stored
        """
        fit_var = get_var(wsp, self.fit_var)

        cans = OrderedDict()

        for bin_name in self.bins:
            frame = fit_var.frame(rf.Title('Fit Results'))

            plotname = '{}_{}'.format(self.full_model, bin_name)
            full_pdf = wsp.pdf(plotname)

            full_pdf.paramOn(frame, rf.Layout(0.1, 0.9, 0.9),
                             rf.Format('NEU', rf.AutoPrecision(2)))

            can = r.TCanvas(create_random_str(32), 'rcan', 600, 600)
            can.cd()
            frame.findObject('{}_paramBox'.format(full_pdf.GetName())).Draw()

            cans[bin_name] = can
        #can.SaveAs(pdfname)

        # returns fit params for each fit

        return cans
Ejemplo n.º 5
0
def main(args):
    """Main"""
    with open(args.configfile, 'r') as conff:
        config = json.load(conff)

    model = BinnedFitModel(config)
    wsp = r.RooWorkspace('test_ws')

    test_vars = {}
    dset_vars = r.RooArgSet()

    for var, bounds in model.get_load_vars():
        try_factory(wsp, '{}[{}]'.format(var, bounds))
        low, high = [float(v) for v in bounds.split(',')]
        test_vars[var] = np.random.uniform(low, high, 10000)
        dset_vars.add(get_var(wsp, var))

    data = pd.DataFrame(test_vars)
    tree = array2tree(data.to_records(index=False))

    dataset = r.RooDataSet('full_data', 'test data', tree, dset_vars)
    ws_import (wsp, dataset)

    if model.define_model(wsp):
        print('configfile is a valid model definition')
Ejemplo n.º 6
0
    def _plot_bin(self,
                  wsp,
                  full_data,
                  bin_name,
                  bin_borders,
                  n_bins,
                  publication=False):
        """Make the distribution plot for a given bin"""
        leg = setup_legend(*self.plot_config['legpos'])

        # In order to remove horizontal error bars from the plot the option
        # XErrorSize(0) has to be used, but that breaks the calculation of the
        # chi2 wrt a given curve since the x-errors are used to determine the
        # bin and the corresponding mean value of the data points in the bin
        # which is necessary to calculate the point at which the curve should be
        # evaluated. So here I plot two curves, the one labeled 'data_hist_plot'
        # is the visible one, whereas the one labeled 'data_hist' will be the
        # with associated x uncertainties that can be used to calculate the chi2
        # This will only be done in "publication mode"
        if publication:
            data_args = (rf.MarkerSize(0.5), rf.Name('data_hist_plot'),
                         rf.XErrorSize(0))
            leg.SetTextSize(0.04)
        else:
            data_args = (rf.MarkerSize(0.7), rf.Name('data_hist'))

        fit_var = get_var(wsp, self.fit_var)
        frame = fit_var.frame(rf.Bins(n_bins))

        cut = get_bin_cut(self.bin_cut_vars, bin_borders)
        full_data.reduce(cut).plotOn(frame, *data_args)
        if publication:
            full_data.reduce(cut).plotOn(frame, rf.MarkerSize(0),
                                         rf.Name('data_hist'), rf.LineColor(0),
                                         rf.LineWidth(0))

            leg.AddEntry(frame.getHist('data_hist_plot'), 'Data', 'PE')

        full_pdf = wsp.pdf(self.full_model + '_' + bin_name)
        full_pdf.plotOn(frame, rf.LineWidth(2), rf.Name('full_pdf_curve'))
        leg.AddEntry(frame.getCurve('full_pdf_curve'), 'Fit result', 'l')

        for name, settings in self.components:
            full_pdf.plotOn(frame, rf.Components(name + '_' + bin_name),
                            rf.LineStyle(settings['line']),
                            rf.LineColor(settings['color']), rf.LineWidth(2),
                            rf.Name(name))
            leg.AddEntry(frame.getCurve(name), settings['label'], 'l')

        # calculate the bin width in MeV
        bw_mev = lambda v, n: (v.getMax() - v.getMin()) / n * 1000
        frame.GetYaxis().SetTitleOffset(1.3)
        frame.GetYaxis().SetTitle('Events / {:.2f} MeV'.format(
            bw_mev(fit_var, n_bins)))

        frame.SetTitle("")

        return frame, leg
Ejemplo n.º 7
0
def get_yields(wsp, binname, yield_names):
    """
    Get the sum of all the yields for a given bin
    """
    yields = []
    for name in yield_names:
        var_name = '_'.join([name, binname])
        yields.append(get_var(wsp, var_name).getVal())

    return np.sum(yields)
Ejemplo n.º 8
0
    def bin_mean(self, wsp, var, bin_name):
        """
        Get the mean value of the passed variable in the passed bin
        """
        bin_data = wsp.data('full_data').reduce(
            get_bin_cut(self.bin_cut_vars, self.bins[bin_name]))
        # Check if the variable can be taken as it is or if it has to be treated
        # specially
        if var in self.bin_cut_vars:
            meanval = bin_data.mean(get_var(wsp, var))
        else:
            # Check to which bin cut variable it belongs
            form = [v for v in self.bin_cut_vars if var in v]
            if len(form) > 1:
                logging.warning('Cannot uniquely identify to which bin '
                                'definition \'{}\' belongs'.format(var))
            # Create a formula var and add it to the temporary data set to
            # easily obtain the mean value
            binvarf = r.RooFormulaVar('binvar', 'temporary bin variable',
                                      form[0], r.RooArgList(get_var(wsp, var)))
            bin_var = bin_data.addColumn(binvarf)
            meanval = bin_data.mean(bin_var)

        return meanval
Ejemplo n.º 9
0
def get_state_fractions(bin_data, wsp, model, binname):
    """
    Get the probabilities for each event to be a chi1 or a chi2 event for a
    given bin
    """
    full_pdf = wsp.pdf('_'.join([model.full_model, binname]))
    chi1_pdf = wsp.pdf('_'.join([CHI1_MODEL, binname]))
    chi2_pdf = wsp.pdf('_'.join([CHI2_MODEL, binname]))

    full_yields = get_yields(wsp, binname, model.nevent_yields)
    chi1_yields = get_yields(wsp, binname, ['Nchic1'])
    chi2_yields = get_yields(wsp, binname, ['Nchic2'])

    mname = model.fit_var
    mvar = get_var(wsp, mname)
    full_pdf_vs = eval_pdf(full_pdf, mvar, bin_data.loc[:, mname]) * full_yields
    chi1_pdf_vs = eval_pdf(chi1_pdf, mvar, bin_data.loc[:, mname]) * chi1_yields
    chi2_pdf_vs = eval_pdf(chi2_pdf, mvar, bin_data.loc[:, mname]) * chi2_yields

    return chi1_pdf_vs / full_pdf_vs, chi2_pdf_vs / full_pdf_vs
def create_workspace(workspace_name, datafile, model):
    """
    Create the workspace and already load the data into it
    """
    wsp = r.RooWorkspace(workspace_name)

    dset_vars = r.RooArgSet()
    variables = []

    for var, bounds in model.get_load_vars():
        try_factory(wsp, '{}[{}]'.format(var, bounds))
        dset_vars.add(get_var(wsp, var))
        variables.append(var)

    data = get_dataframe(datafile, columns=variables)
    tree = array2tree(data.to_records(index=False))

    dataset = r.RooDataSet('full_data', 'full data sample', tree, dset_vars)
    ws_import(wsp, dataset)

    wsp.Print()
    return wsp
Ejemplo n.º 11
0
    def plot_fit_params(self, wsp, pdfname, snapname=''):
        """
        Plot all free fit parameters onto canvas and save as a pdf.

        Args:
            wsp (ROOT.RooWorkspace): workspace where the model is stored
            pdfname (str): Name of the created pdf under which the plot will be
                stored
            snapname (str, optional): Name of snapshot that will be loaded
                before plotting
        """
        if snapname:
            wsp.loadSnapshot(snapname)
        frame = get_var(wsp, self.mname).frame(rf.Title('Fit Results'))
        full_pdf = wsp.pdf(self.full_model)

        full_pdf.paramOn(frame, rf.Layout(0.1, 0.9, 0.9),
                         rf.Format('NEU', rf.AutoPrecision(2)))

        can = r.TCanvas(create_random_str(32), 'rcan', 600, 600)
        can.cd()
        frame.findObject('{}_paramBox'.format(full_pdf.GetName())).Draw()
        can.SaveAs(pdfname)
Ejemplo n.º 12
0
    def define_model(self, wsp):
        """
        Define the jpsi mass model in the passed workspace

        Args:
            wsp (ROOT.RooWorkspace): workspace into which the fit model is imported
        """
        # rapidity dependent sigma of J/psi
        wsp.factory('CBsigma_p0_jpsi[0.02, 0.015, 0.025]')
        wsp.factory('CBsigma_p1_jpsi[0, -0.01, 0.01]')
        wsp.factory('CBsigma_p2_jpsi[0.01, 0.005, 0.025]')
        CBsigma_jpsi = r.RooFormulaVar('CBsigma_jpsi',
                                       '@0 + @1 * abs(@3) + @2 * abs(@3) * abs(@3)',
                                       r.RooArgList(get_var(wsp, 'CBsigma_p0_jpsi'),
                                                    get_var(wsp, 'CBsigma_p1_jpsi'),
                                                    get_var(wsp, 'CBsigma_p2_jpsi'),
                                                    get_var(wsp, 'JpsiRap')))

        wsp.factory('CBalpha_p0_jpsi[1.729, 1.2, 2.5]')
        wsp.factory('CBalpha_p1_jpsi[0.191, 0, 0.5]')
        CBalpha_jpsi = r.RooFormulaVar('CBalpha_jpsi', '@0 + @1 * abs(@2)',
                                       r.RooArgList(get_var(wsp, 'CBalpha_p0_jpsi'),
                                                    get_var(wsp, 'CBalpha_p1_jpsi'),
                                                    get_var(wsp, 'JpsiRap')))

        wsp.factory('CBmass_p0_jpsi[3.094, 3.086, 3.098]')
        wsp.factory('CBmass_p1_jpsi[0.001, -0.002, 0.002]')
        wsp.factory('CBmass_p2_jpsi[-0.003, -0.005, 0.001]')
        CBmass_jpsi = r.RooFormulaVar('CBmass_jpsi',
                                      '@0 + @1 * abs(@3) + @2 * abs(@3) * abs(@3)',
                                      r.RooArgList(get_var(wsp, 'CBmass_p0_jpsi'),
                                                   get_var(wsp, 'CBmass_p1_jpsi'),
                                                   get_var(wsp, 'CBmass_p2_jpsi'),
                                                   get_var(wsp, 'JpsiRap')))

        # Fraction to ensure that sigma 2 is smaller than sigma 1
        wsp.factory('r_sigma2_jpsi[0.5, 0, 0.9]')
        CBsigma2_jpsi = r.RooFormulaVar('CBsigma2_jpsi', '@0 * @1',
                                        r.RooArgList(get_var(wsp, 'r_sigma2_jpsi'),
                                                     CBsigma_jpsi))

        ws_import(wsp, r.RooArgSet(CBalpha_jpsi, CBmass_jpsi, CBsigma2_jpsi))

        wsp.factory('RooCBShape::{}({}, CBmass_jpsi, CBsigma_jpsi, CBalpha_jpsi,'
                    'CBn_jpsi[2.5, 1.8, 6])'.format('CB_shape1_jpsi', self.mname))
        # wsp.factory('RooCBShape::{}({}, CBmass_jpsi, CBsigma2_jpsi, CBalpha_jpsi,'
        #             ' CBn_jpsi)'.format('CB_shape2_jpsi', self.mname))
        wsp.factory('RooGaussian::{}({}, CBmass_jpsi, CBsigma2_g_jpsi[0.01, 0.0, 0.025])'
                    .format('CB_shape2_jpsi', self.mname))


        wsp.factory('SUM::{}(frac_CB1[0.5, 0, 1] * CB_shape1_jpsi, CB_shape2_jpsi)'
                    .format(self.signal))

        wsp.factory('RooExponential::{}({}, lambda_jpsi[0, -10, 10])'
                    .format(self.bkg_model, self.mname))

        # fix some parameters (as was done previously, values also from there)
        par_fix_vals = [
            # ('CBsigma_p1_jpsi', 0),
            ('CBmass_p1_jpsi', 0),
            ('CBmass_p2_jpsi', 0),
            # ('CBalpha_p1_jpsi', 0),
            # ('CBsigma_p2_jpsi', 0.0125),
            ('CBn_jpsi', 2.5)
        ]

        fix_params(wsp, par_fix_vals)

        wsp.factory('{}[1e6, 0, 5e7]'.format(self.nevent_vars[0])) # Njpsi
        wsp.factory('{}[1e5, 0, 5e6]'.format(self.nevent_vars[-1])) # Nbkg_jpsi

        wsp.factory('SUM::{}({} * {},  {} * {})'
                    .format(self.full_model,
                            self.nevent_vars[0], self.signal,
                            self.nevent_vars[-1], self.bkg_model))
Ejemplo n.º 13
0
    def plot_simvar_graphs(self, wsp, simvars, sym_uncer=False):
        """
        Create TGraphs for all the "simple" proto parameters

        Args:
            wsp (ROOT.RooWorkspace): Workspace holding the fit results from a
                simultaneous fit.
            simvars (list of strings): List of proto parameter names that do not
                have a functional dependency but instead are independent for
                each bin.
            sym_uncer (boolean, optional): Return the graphs with symmetric
                uncertainties instead of asymmetric ones (False)

        Returns:
            list of TGraphAsymmErrors: Graphs of the passed proto_parameters as
                a function of the binning variables. For each bin in either
                direction a graph is created as a function of the other
                direction. The name of the returned graph indicates on which
                variable the graph depends and in which bin of the other
                variable the values are taken from.
                E.g.: 'p_v_var1_bin_0' means that parameter 'p' is plotted as a
                function of 'var1' in bin 0 of 'var2'
        """
        #auxiliary definitions
        bin_var_X = self.bin_vars[0]
        bin_var_Y = self.bin_vars[1]
        #auxiliary dict for getting the parameters in the right order of bins
        p_name = OrderedDict()
        p_name[bin_var_X] = ('j', 'i')
        p_name[bin_var_Y] = ('i', 'j')

        #all bin means calculated previously
        bin_means = OrderedDict()
        for bin_var in self.bin_vars:
            for bin_name in self.bins:
                mean_name = '__'.join([bin_var, bin_name])
                bin_means[mean_name] = self.bin_mean(wsp, bin_var, bin_name)

        graphs = []

        for bintovar, bin_var in enumerate(self.bin_vars):
            #get parameter in the right binning order
            p_getname = '{param}_{x_var}_{' + p_name[bin_var][
                0] + '}_{y_var}_{' + p_name[bin_var][1] + '}'
            b_getname = p_getname[8:]

            for param in simvars:
                vals = []

                #get the values of the parameter for each bin of X,Y
                for i in xrange(len(self.binning[1 - bintovar]) - 1):
                    vals.append([
                        get_var(
                            wsp,
                            p_getname.format(param=param,
                                             x_var=bin_var_X,
                                             y_var=bin_var_Y,
                                             i=i,
                                             j=j))
                        for j in xrange(len(self.binning[bintovar]) - 1)
                    ])

                #plot graphs as a function of binning var
                graph = self.plot_free_pars(wsp, bin_var, vals, sym_uncer)

                #setting the correct mean (errors adjust accordingly), setting graph name
                for i in xrange(len(self.binning[1 - bintovar]) - 1):
                    g_mean = np.array([
                        bin_means['__'.join([
                            bin_var,
                            b_getname.format(x_var=bin_var_X,
                                             y_var=bin_var_Y,
                                             i=i,
                                             j=j)
                        ])] for j in xrange(len(self.binning[bintovar]) - 1)
                    ])
                    graph[i] = assign_x(graph[i], g_mean)
                    # graph name of the form [y_axis]_v_[x_axis]_bin_[bin of other bin_var]
                    sym_add = '_sym_uncer' if sym_uncer else ''
                    graph[i].SetName('{}_v_{}_bin_{}{}'.format(
                        param, bin_var, i, sym_add))
                    graphs.append(graph[i])

        return graphs
Ejemplo n.º 14
0
    def plot(self, wsp, verbose=False, publication=False):
        """
        Plot the fit results from the passed workspace

        Args:
            wsp (ROOT.RooWorkspace): The workspace that holds the model and the
                data as well as the fit results
            verbose (boolean): Print some more information about the fit status
                onto the plots (mainly for debugging)
            publication (boolean, optional): Make the plots in publication
                quality (negates the verbose argument automatically)
        """
        data = wsp.data('full_data')

        cans = OrderedDict()
        g_chi2, g_ndf = 0, 0

        fvar = get_var(wsp, self.fit_var)
        n_bins = int(round(((fvar.getMax() - fvar.getMin()) / BIN_WIDTH)))

        wsp.loadSnapshot('snap_two_dim')

        for bin_name, bin_borders in self.bins.iteritems():
            frame, leg = self._plot_bin(wsp, data, bin_name, bin_borders,
                                        n_bins, publication)
            b_chi2, b_ndf = get_chi2_ndf(frame, 'full_pdf_curve', 'data_hist')
            logging.debug('bin: {}: chi2 / number bins = {:.2f} / {}'.format(
                bin_name, b_chi2, b_ndf))
            g_chi2 += b_chi2
            g_ndf += b_ndf

            can = _setup_canvas(None)  # returns a TCanvasWrapper
            can.cd()

            pad = r.TPad('result_pad', 'result pad', 0, 0.3, 1, 0.98)
            r.SetOwnership(pad, False)

            if publication:
                pad.SetBottomMargin(0)

            pad.Draw()
            pad.cd()
            frame.Draw()
            can.add_tobject(pad)
            leg.Draw()
            can.add_tobject(leg)

            # pulls
            pull_frame = self._pull_plot(wsp, frame, publication)

            can.cd()
            pull_pad = r.TPad('pull_pad', 'pull pad', 0, 0, 1, 0.3)
            r.SetOwnership(pull_pad, False)
            if publication:
                pull_pad.SetTopMargin(0)
                pull_pad.SetBottomMargin(0.275)
            else:
                pull_pad.SetBottomMargin(0.2)
            pull_pad.Draw()
            pull_pad.SetGridy()
            pull_pad.cd()
            pull_frame.Draw()
            can.add_tobject(pull_pad)

            cans[bin_name] = can

        fit_res = wsp.genobj('fit_res_two_dim')
        n_float_pars = fit_res.floatParsFinal().getSize()
        g_ndf -= n_float_pars
        logging.debug('Floating parameters in fit: {}'.format(n_float_pars))
        logging.info('Global chi2 / ndf = {:.2f} / {}'.format(g_chi2, g_ndf))

        add_info = []

        # loop again over all canvases and put the global chi2 / ndf there
        add_info.append(
            (0.15, 0.875,
             '(global) #chi^{{2}} / ndf = {:.1f} / {}'.format(g_chi2, g_ndf)))

        if verbose and not publication:
            status = get_var(wsp, '__fit_status__').getVal()
            cov_qual = get_var(wsp, '__cov_qual__').getVal()
            add_info.append(
                (0.15, 0.825,
                 'status = {}, covQual = {}'.format(int(status),
                                                    int(cov_qual))))
            # Check if the simultaneous negative log-likelihood is present in
            # the workspace or create it if it is not yet present.
            # Since the snapshot values of the fit result are already loaded it
            # can be directly evaluated to get the value at the minimum
            sim_nll = get_var(wsp, 'sim_nll')
            if sim_nll is None:
                sim_nll = self._create_nll(
                    wsp, (rf.Extended(True), rf.Offset(True)))
            min_nll = sim_nll.getVal()

            aic = calc_info_crit(fit_res, min_nll)
            bic = calc_info_crit(fit_res, min_nll, data.numEntries())
            add_info.append(
                (0.15, 0.775, 'AIC = {:.1f}, BIC = {:.1f}'.format(aic, bic)))

        latex = setup_latex()
        if publication:
            latex.SetTextSize(0.04)
            add_info[0] = (0.185, 0.89, add_info[0][2])

        for bin_name, can in cans.iteritems():
            res_pad = can.attached_tobjects[0]
            res_pad.cd()
            put_on_latex(latex, add_info, ndc=True)
            bin_info = get_bin_info_text(bin_name, self.bins)
            put_on_latex(latex, bin_info, ndc=True)

        # for easier debugging at the moment
        return cans
Ejemplo n.º 15
0
    def define_model(self, ws):
        """
        Build the chic mass model in the passed workspace

        Args:
            ws (ROOT.RooWorkspace): Workspace into which the mass model is
                constructed
        """
        ## build mass model
        ws.factory('RooCBShape::{}({}, CBmass1[3.5,3.45,3.54],'
                   'CBsigma1[0.008, 0.003, 0.02], CBalpha1[0.6, 0.2, 1.1], '
                   'CBn[2.5, 1.8, 3.2])'.format(self.chic1, self.mname))

        pes = r.RooFormulaVar(
            'PES', '(@0 - {0}) / {1}'.format(m_psiPDG, m_chic1PDG - m_psiPDG),
            r.RooArgList(get_var(ws, 'CBmass1')))
        ws_import(ws, pes)
        CBmass0 = r.RooFormulaVar(
            'CBmass0', '(@0 * {0}) + {1}'.format(m_chic0PDG - m_psiPDG,
                                                 m_psiPDG),
            r.RooArgList(get_var(ws, 'PES')))
        CBmass2 = r.RooFormulaVar(
            'CBmass2', '(@0 * {0}) + {1}'.format(m_chic2PDG - m_psiPDG,
                                                 m_psiPDG),
            r.RooArgList(get_var(ws, 'PES')))
        ws_import(ws, r.RooArgSet(CBmass0, CBmass2))

        # ws.factory('CBmass2[3.54, 3.49, 3.58]')
        # ws.factory('CBmass0[3.42, 3.395, 3.45]')

        CBsigma0 = r.RooFormulaVar(
            'CBsigma0', '@0 * {0}'.format(
                (m_chic0PDG - m_psiPDG) / (m_chic1PDG - m_psiPDG)),
            r.RooArgList(get_var(ws, 'CBsigma1')))
        CBsigma2 = r.RooFormulaVar(
            'CBsigma2', '@0 * {0}'.format(
                (m_chic2PDG - m_psiPDG) / (m_chic1PDG - m_psiPDG)),
            r.RooArgList(get_var(ws, 'CBsigma1')))
        ws_import(ws, r.RooArgSet(CBsigma0, CBsigma2))

        # ws.factory('CBsigma2[0.008, 0.003, 0.02]')
        # ws.factory('CBsigma0[0.008, 0.003, 0.02]')

        ws.factory(
            'RooCBShape::{}({}, CBmass2, CBsigma2, CBalpha2[0.6, 0.2, 1.1], CBn)'
            .format(self.chic2, self.mname))
        # ws.factory('RooCBShape::M_chic2(chicMass, CBmass2, CBsigma2, CBalpha1, CBn)')
        CBalpha0 = r.RooFormulaVar(
            'CBalpha0', '(@0 + @1) / 2.0',
            r.RooArgList(get_var(ws, 'CBalpha1'), get_var(ws, 'CBalpha2')))
        # r.RooArgList(ws.var('CBalpha1'), ws.var('CBalpha1')))
        ws_import(ws, r.RooArgSet(CBalpha0))

        ws.factory(
            'RooVoigtian::{}({}, CBmass0, CBsigma0, CBwitdh[0.0104])'.format(
                self.chic0, self.mname))

        ## background
        # ws.factory('q01S[3.1, 3.0, 3.2]')
        # ws.factory('alpha1[0.6, 0, 5.0]')
        # ws.factory('beta1[-2.5, -10, 0]')

        # a1 = r.RooFormulaVar('a1', 'TMath::Abs(@0 - @1)',
        #                      r.RooArgList(get_var(ws, 'chicMass'),
        #                                   get_var(ws, 'q01S')))
        # b1 = r.RooFormulaVar('b1', '@0 * (@1 - @2)',
        #                      r.RooArgList(get_var(ws, 'beta1'),
        #                                   get_var(ws, 'chicMass'),
        #                                   get_var(ws, 'q01S')))
        # signum1 = r.RooFormulaVar('signum1',
        #                           '(TMath::Sign(-1., @0 - @1) + 1) / 2.',
        #                           r.RooArgList(get_var(ws, self.mname),
        #                                        get_var(ws, 'q01S')))
        # ws_import(ws, r.RooArgSet(a1, b1, signum1))

        # M_background = r.RooGenericPdf(self.bkg_model, 'signum1 * pow (a1, alpha1) * exp(b1)',
        #                                r.RooArgList(ws.function('a1'), ws.function('signum1'), ws.function('b1'),
        #                                             ws.var('alpha1')))

        # polynomial background
        ws.factory('BK_p1[0, -1, 1]')
        ws.factory('BK_p2[0, -1, 1]')
        M_background = r.RooPolynomial(
            self.bkg_model, self.bkg_model, ws.var('chicMass'),
            r.RooArgList(ws.var('BK_p1'), ws.var('BK_p2')))

        # M_background = r.RooExponential(self.bkg_model, self.bkg_model, ws.var('chicMass'), ws.var('BK_p1'))

        ws_import(ws, M_background)

        fix_params(
            ws,
            [
                ('CBn', 2.75),
                ('BK_p2', 1e-10),
                # ('q01S', 3.1)
            ])
        ws.var('CBmass1').setVal(3.510)
        # ws.var('alpha1').setConstant(True)
        # ws.var('q01S').setConstant(True)
        # ws.var('beta1').setConstant(True)

        ## combine model
        ws.factory('{}[10000, 0, 200000]'.format(
            self.nevent_vars[1]))  # Nchic1
        ws.factory('{}[300, 0, 10000]'.format(self.nevent_vars[0]))  # Nchic0
        ws.factory('{}[30000, 0, 200000]'.format(self.nevent_vars[-1]))  # Nbkg

        ## leave Nchic2 free and make ratio a formula var
        ws.factory('{}[10000, 0, 200000]'.format(
            self.nevent_vars[2]))  # Nchic2
        r_c2_c1 = r.RooFormulaVar(
            'r_chic2_chic1', '@0 / @1',
            r.RooArgList(get_var(ws, self.nevent_vars[2]),
                         get_var(ws, self.nevent_vars[1])))
        ws_import(ws, r_c2_c1)

        ## make ratio free and Nchic2 depend on it
        # ws.factory('r_chic2_chic1[0.5, 0, 1]')
        # Nchic2 = r.RooFormulaVar(self.nevent_vars[2], '@0 * @1',
        #                          r.RooArgList(get_var(ws, 'r_chic2_chic1'),
        #                                       get_var(ws, self.nevent_vars[1])))
        # ws_import(ws, Nchic2)

        Nsignal = r.RooFormulaVar(
            'Nsignal', '@0 + @1 + @2',
            r.RooArgList(get_var(ws, self.nevent_vars[1]),
                         get_var(ws, self.nevent_vars[2]),
                         get_var(ws, self.nevent_vars[0])))
        ws_import(ws, Nsignal)

        ws.factory('SUM::{}({} * {}, {} * {}, {} * {})'.format(
            self.signal, self.nevent_vars[1], self.chic1, self.nevent_vars[2],
            self.chic2, self.nevent_vars[0], self.chic0))
        ws.factory('SUM::{}(Nsignal * {}, {} *  {})'.format(
            self.full_model, self.signal, self.nevent_vars[-1],
            self.bkg_model))
Ejemplo n.º 16
0
    def plot(self, wsp, pdfname, snapname='', add_cut='', **kwargs):
        """
        Make a plot of the model and the fitted data and save as pdf.

        Args:
            wsp (ROOT.RooWorkspace): workspace where all the information
                (including data and model) is stored
            pdfname (str): Name of the created pdf under which the plot will be
                stored.
            snapname (str, optional): Name of snapshot that will be loaded
                before plotting
            add_cut (str, optional): Additional cut to apply to the dataset
                before plotting. NOTE: all used variables have to be present in
                the dataset

        Keyword Args:
            logy (bool): Set log on y scale of distribution plot
            weighted_fit (bool): Assume that the fit has done using weights and
                calculate the data uncertainties using these weights.
            verbose (bool): Put information on the fit status and the covariance
                matrix quality onto the fit
        """
        fitresname = None
        if snapname:
            wsp.loadSnapshot(snapname)
            fitresname = snapname.replace('snap', 'fit_res')

        # Starting from ROOT v6.12 it is possible to set this on individual axis
        r.TGaxis.SetMaxDigits(3)

        mvar = get_var(wsp, self.mname)
        plot_data = wsp.data('full_data')
        if add_cut:
            plot_data = plot_data.reduce(add_cut)

        nbins = int((mvar.getMax() - mvar.getMin()) / BIN_WIDTH)

        # TODO: find a better heuristic to do this here
        nevents_data = plot_data.numEntries()
        logging.debug(
            'Number of events in reduced sample: {}'.format(nevents_data))
        while nevents_data / nbins < 50:
            nbins /= 2

        frame = mvar.frame(rf.Bins(nbins))

        frame.SetTitle("")
        frame.GetYaxis().SetTitleOffset(1.3)
        frame.GetYaxis().SetTitle('Events / {:.1f} MeV'.format(
            (mvar.getMax() - mvar.getMin()) / nbins * 1000))

        full_pdf = wsp.pdf(self.full_model)

        leg = self._setup_legend()

        if kwargs.pop('weighted_fit', True):
            plot_data.plotOn(frame, rf.MarkerSize(0.8), rf.Name('data_hist'),
                             rf.DataError(r.RooAbsData.SumW2))
        else:
            plot_data.plotOn(frame, rf.MarkerSize(0.8), rf.Name('data_hist'))

        full_pdf.plotOn(
            frame,
            rf.LineWidth(2),
            # rf.ProjWData(plot_data),
            rf.Name('full_pdf_curve'))

        leg.AddEntry(frame.getCurve('full_pdf_curve'), 'sum', 'l')

        for name, lst, lcol, legentry in self.components:
            full_pdf.plotOn(frame, rf.Components(name), rf.LineStyle(lst),
                            rf.LineColor(lcol), rf.LineWidth(2), rf.Name(name))
            leg.AddEntry(frame.getCurve(name), legentry, 'l')

        info_text = []
        if fitresname is not None:
            fit_res = wsp.genobj(fitresname)
            chi2, ndf = get_chi2_ndf(frame, 'full_pdf_curve', 'data_hist',
                                     fit_res)
            info_text.append(
                (0.15, 0.875, '#chi^{{2}}/ndf = {:.1f} / {}'.format(chi2,
                                                                    ndf)))

        if kwargs.pop('verbose', False):
            status = get_var(wsp, '__fit_status__').getVal()
            cov_qual = get_var(wsp, '__cov_qual__').getVal()
            info_text.append(
                (0.15, 0.825,
                 'status = {}, covQual = {}'.format(int(status),
                                                    int(cov_qual))))
            if fitresname is not None:
                aic = calc_info_crit(fit_res)
                bic = calc_info_crit(fit_res, nevents_data)
                info_text.append(
                    (0.15, 0.775,
                     'AIC = {:.1f}, BIC = {:.1f}'.format(aic, bic)))

        pull_frame = mvar.frame(rf.Bins(nbins))
        hpull = frame.pullHist('data_hist', 'full_pdf_curve', True)
        hpull.SetMarkerSize(0.8)
        pull_frame.addPlotable(hpull, 'P')

        pull_frame.SetTitle("")
        pull_frame.GetYaxis().SetTitle("pull")
        pull_frame.GetXaxis().SetTitleSize(0.08)
        pull_frame.GetYaxis().SetTitleSize(0.08)
        pull_frame.GetXaxis().SetLabelSize(0.08)
        pull_frame.GetYaxis().SetLabelSize(0.08)
        pull_frame.GetYaxis().SetTitleOffset(0.4)
        pull_frame.GetYaxis().SetRangeUser(-5.99, 5.99)

        latex = setup_latex()
        can = r.TCanvas(create_random_str(16), '', 50, 50, 600, 600)
        can.cd()

        pad = r.TPad('mass_pad', 'mass_pad', 0, 0.3, 1, 1)
        r.SetOwnership(pad, False)
        pad.Draw()
        pad.cd()
        if kwargs.pop('logy', False):
            pad.SetLogy()
            pdfname = pdfname.replace('mass_fit', 'mass_fit_log')
        frame.Draw()
        leg.Draw()
        put_on_latex(latex, info_text, ndc=True)

        can.cd()
        pull_pad = r.TPad('pull_pad', 'pull_pad', 0, 0, 1, 0.3)
        r.SetOwnership(pull_pad, False)
        pull_pad.Draw()
        pull_pad.SetGridy()
        pull_pad.SetBottomMargin(0.2)
        pull_pad.cd()
        pull_frame.Draw()

        can.SaveAs(pdfname)