Ejemplo n.º 1
0
 def testVariablesSetDevice(self):
     batch_size = 5
     height, width = 299, 299
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     # Force all Variables to reside on the device.
     with tf.variable_scope('on_cpu'), tf.device('/cpu:0'):
         inception.inception_v4(inputs, num_classes)
     with tf.variable_scope('on_gpu'), tf.device('/gpu:0'):
         inception.inception_v4(inputs, num_classes)
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                scope='on_cpu'):
         self.assertDeviceEqual(v.device, '/cpu:0')
     for v in tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                scope='on_gpu'):
         self.assertDeviceEqual(v.device, '/gpu:0')
Ejemplo n.º 2
0
def model(x, H, reuse, is_training=True):
    slim_attention_lname = 'Mixed_3b'

    if H['slim_basename'] == 'resnet_v1_101':
        with slim.arg_scope(resnet.resnet_arg_scope()):
            _, T = resnet.resnet_v1_101(x,
                                        is_training=is_training,
                                        num_classes=1000,
                                        reuse=reuse)
    elif H['slim_basename'] == 'resnet_v2_152':
        with slim.arg_scope(resnet.resnet_arg_scope()):
            _, T = resnet.resnet_v2_152(x,
                                        is_training=is_training,
                                        num_classes=1001,
                                        reuse=reuse)
    elif H['slim_basename'] == 'InceptionV1':
        with slim.arg_scope(inception.inception_v1_arg_scope()):
            _, T = inception.inception_v1(x,
                                          is_training=is_training,
                                          num_classes=1001,
                                          spatial_squeeze=False,
                                          reuse=reuse)
    elif H['slim_basename'] == 'InceptionV2':
        with slim.arg_scope(inception.inception_v2_arg_scope()):
            _, T = inception.inception_v2(x,
                                          is_training=is_training,
                                          num_classes=1001,
                                          spatial_squeeze=False,
                                          reuse=reuse)
    elif H['slim_basename'] == 'InceptionV3':
        with slim.arg_scope(inception.inception_v3_arg_scope()):
            _, T = inception.inception_v3(x,
                                          is_training=is_training,
                                          num_classes=1001,
                                          spatial_squeeze=False,
                                          reuse=reuse)
        slim_attention_lname = 'Mixed_5b'
    elif H['slim_basename'] == 'InceptionV4':
        with slim.arg_scope(inception.inception_v4_arg_scope()):
            _, T = inception.inception_v4(x,
                                          is_training=is_training,
                                          num_classes=1001,
                                          reuse=reuse)
        slim_attention_lname = 'Mixed_4a'
    elif H['slim_basename'] == 'MobilenetV1':
        with slim.arg_scope(mobilenet_v1.mobilenet_v1_arg_scope()):
            _, T = mobilenet_v1.mobilenet_v1(x,
                                             is_training=is_training,
                                             reuse=reuse)

    # print '\n'.join(map(str, [(k, v.op.outputs[0].get_shape()) for k, v in T.iteritems()]))
    coarse_feat = T[H['slim_top_lname']][:, :, :, :H['later_feat_channels']]
    assert coarse_feat.op.outputs[0].get_shape()[3] == H['later_feat_channels']

    # fine feat can be used to reinspect input
    attention_lname = H.get('slim_attention_lname', slim_attention_lname)
    early_feat = T[attention_lname]

    return coarse_feat, early_feat
Ejemplo n.º 3
0
 def testTrainEvalWithReuse(self):
     train_batch_size = 5
     eval_batch_size = 2
     height, width = 150, 150
     num_classes = 1000
     with self.test_session() as sess:
         train_inputs = tf.random_uniform(
             (train_batch_size, height, width, 3))
         inception.inception_v4(train_inputs, num_classes)
         eval_inputs = tf.random_uniform(
             (eval_batch_size, height, width, 3))
         logits, _ = inception.inception_v4(eval_inputs,
                                            num_classes,
                                            is_training=False,
                                            reuse=True)
         predictions = tf.argmax(logits, 1)
         sess.run(tf.global_variables_initializer())
         output = sess.run(predictions)
         self.assertEquals(output.shape, (eval_batch_size, ))
Ejemplo n.º 4
0
 def testBuildWithoutAuxLogits(self):
     batch_size = 5
     height, width = 299, 299
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, endpoints = inception.inception_v4(inputs,
                                                num_classes,
                                                create_aux_logits=False)
     self.assertFalse('AuxLogits' in endpoints)
     self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
Ejemplo n.º 5
0
 def testHalfSizeImages(self):
     batch_size = 5
     height, width = 150, 150
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = inception.inception_v4(inputs, num_classes)
     self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     pre_pool = end_points['Mixed_7d']
     self.assertListEqual(pre_pool.get_shape().as_list(),
                          [batch_size, 3, 3, 1536])
Ejemplo n.º 6
0
 def testEvaluation(self):
     batch_size = 2
     height, width = 299, 299
     num_classes = 1000
     with self.test_session() as sess:
         eval_inputs = tf.random_uniform((batch_size, height, width, 3))
         logits, _ = inception.inception_v4(eval_inputs,
                                            num_classes,
                                            is_training=False)
         predictions = tf.argmax(logits, 1)
         sess.run(tf.global_variables_initializer())
         output = sess.run(predictions)
         self.assertEquals(output.shape, (batch_size, ))
Ejemplo n.º 7
0
 def testUnknownBatchSize(self):
     batch_size = 1
     height, width = 299, 299
     num_classes = 1000
     with self.test_session() as sess:
         inputs = tf.placeholder(tf.float32, (None, height, width, 3))
         logits, _ = inception.inception_v4(inputs, num_classes)
         self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
         self.assertListEqual(logits.get_shape().as_list(),
                              [None, num_classes])
         images = tf.random_uniform((batch_size, height, width, 3))
         sess.run(tf.global_variables_initializer())
         output = sess.run(logits, {inputs: images.eval()})
         self.assertEquals(output.shape, (batch_size, num_classes))
Ejemplo n.º 8
0
 def testAllEndPointsShapes(self):
     batch_size = 5
     height, width = 299, 299
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     _, end_points = inception.inception_v4(inputs, num_classes)
     endpoints_shapes = {
         'Conv2d_1a_3x3': [batch_size, 149, 149, 32],
         'Conv2d_2a_3x3': [batch_size, 147, 147, 32],
         'Conv2d_2b_3x3': [batch_size, 147, 147, 64],
         'Mixed_3a': [batch_size, 73, 73, 160],
         'Mixed_4a': [batch_size, 71, 71, 192],
         'Mixed_5a': [batch_size, 35, 35, 384],
         # 4 x Inception-A blocks
         'Mixed_5b': [batch_size, 35, 35, 384],
         'Mixed_5c': [batch_size, 35, 35, 384],
         'Mixed_5d': [batch_size, 35, 35, 384],
         'Mixed_5e': [batch_size, 35, 35, 384],
         # Reduction-A block
         'Mixed_6a': [batch_size, 17, 17, 1024],
         # 7 x Inception-B blocks
         'Mixed_6b': [batch_size, 17, 17, 1024],
         'Mixed_6c': [batch_size, 17, 17, 1024],
         'Mixed_6d': [batch_size, 17, 17, 1024],
         'Mixed_6e': [batch_size, 17, 17, 1024],
         'Mixed_6f': [batch_size, 17, 17, 1024],
         'Mixed_6g': [batch_size, 17, 17, 1024],
         'Mixed_6h': [batch_size, 17, 17, 1024],
         # Reduction-A block
         'Mixed_7a': [batch_size, 8, 8, 1536],
         # 3 x Inception-C blocks
         'Mixed_7b': [batch_size, 8, 8, 1536],
         'Mixed_7c': [batch_size, 8, 8, 1536],
         'Mixed_7d': [batch_size, 8, 8, 1536],
         # Logits and predictions
         'AuxLogits': [batch_size, num_classes],
         'PreLogitsFlatten': [batch_size, 1536],
         'Logits': [batch_size, num_classes],
         'Predictions': [batch_size, num_classes]
     }
     self.assertItemsEqual(endpoints_shapes.keys(), end_points.keys())
     for endpoint_name in endpoints_shapes:
         expected_shape = endpoints_shapes[endpoint_name]
         self.assertTrue(endpoint_name in end_points)
         self.assertListEqual(
             end_points[endpoint_name].get_shape().as_list(),
             expected_shape)
Ejemplo n.º 9
0
 def testBuildLogits(self):
     batch_size = 5
     height, width = 299, 299
     num_classes = 1000
     inputs = tf.random_uniform((batch_size, height, width, 3))
     logits, end_points = inception.inception_v4(inputs, num_classes)
     auxlogits = end_points['AuxLogits']
     predictions = end_points['Predictions']
     self.assertTrue(auxlogits.op.name.startswith('InceptionV4/AuxLogits'))
     self.assertListEqual(auxlogits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertTrue(logits.op.name.startswith('InceptionV4/Logits'))
     self.assertListEqual(logits.get_shape().as_list(),
                          [batch_size, num_classes])
     self.assertTrue(
         predictions.op.name.startswith('InceptionV4/Logits/Predictions'))
     self.assertListEqual(predictions.get_shape().as_list(),
                          [batch_size, num_classes])