Ejemplo n.º 1
0
def test(model, dataloader, epoch, opt, test_logger, visualizer=None):
    labels = []
    sample_matrics = []
    for i, (images, targets) in enumerate(dataloader):
        if targets.size(0) == 0:
            continue

        batches_done = len(dataloader) * epoch + i
        if not opt.no_cuda:
            images_cpu = images.clone()
            model = model.to(opt.device)
            images = Variable(images.to(opt.device))
            if targets is not None:
                targets = Variable(targets.to(opt.device), requires_grad=False)

        labels += targets[:, 1].tolist()
        targets[:, 2:] = xywh2xyxy(targets[:, 2:])
        targets[:, 2:] *= opt.image_size

        detections = model.forward(images)
        detections = non_max_suppression(detections, opt.conf_thres,
                                         opt.nms_thres)
        sample_matrics += get_batch_statistics(detections,
                                               targets.cpu(),
                                               iou_threshold=0.5)

        if visualizer is not None and not opt.no_vis_preds:
            visualizer.plot_predictions(images.cpu(), detections,
                                        env='main')  # plot prediction
        if visualizer is not None and not opt.no_vis_gt:
            visualizer.plot_ground_truth(images.cpu(),
                                         targets.cpu(),
                                         env='main')  # plot ground truth

    true_positives, pred_scores, pred_labels = [
        np.concatenate(x, 0) for x in list(zip(*sample_matrics))
    ]
    precision, recall, AP, f1, ap_class = ap_per_class(true_positives,
                                                       pred_scores,
                                                       pred_labels, labels)

    # logging
    metric_table_data = [['Metrics', 'Value'], ['precision',
                                                precision.mean()],
                         ['recall', recall.mean()], ['f1', f1.mean()],
                         ['mAP', AP.mean()]]

    metric_table = AsciiTable(metric_table_data,
                              title='[Epoch {:d}/{:d}'.format(
                                  epoch, opt.num_epochs))
    print('{}\n\n\n'.format(metric_table.table))

    class_names = load_classe_names(opt.classname_path)
    for i, c in enumerate(ap_class):
        metric_table_data += [['AP-{}'.format(class_names[c]), AP[i]]]
    metric_table.table_data = metric_table_data
    test_logger.write('{}\n\n\n'.format(metric_table.table))

    if visualizer is not None:
        vis.plot_metrics(metric_table_data, batches_done, env='main')
Ejemplo n.º 2
0
def val(model, optimizer, dataloader, epoch, vis, opt):
    for i, (images, targets) in enumerate(dataloader):
        labels += targets[:, 1].tolist()
        targets[:, 2:] = xywh2xyxy(targets[:, 2:])
        targets[:, 2:] *= opt.img_size

        loss, yolo_outputs = model.forward(images, targets)
        outputs = non_max_suppression(outputs, opt.conf_thres, opt.nms_thres)

        error52 = model.yolo_layer52.metrics
        error26 = model.yolo_layer26.metrics
        error13 = model.yolo_layer13.metrics
        vis.print_current_losses([error52, error26, error13], epoch, i,
                                 len(dataloader))
        vis.plot_current_visuals(images_cpu, yolo_outputs)

        sample_matrics += get_batch_statistics(outputs,
                                               targets,
                                               iou_threshold=0.5)

    true_positives, pred_scores, pred_labels = [
        np.concatenate(x, 0) for x in list(zip(*sample_matrics))
    ]
    precision, recall, AP, f1, ap_class = ap_per_class(true_positives,
                                                       pred_scores,
                                                       pred_labels, labels)

    print("Average Precision for Val:")
    for i, c in enumerate(ap_class):
        print('Class %s - AP: %.4f' % (class_names[c], AP[i]))

    print('mAP: %.4f' % (AP.mean()))
Ejemplo n.º 3
0
def test(model,dataloader,epoch,opt):
    labels = []
    sample_matrics = []
    total_time = 0
    pic_num = 0
    first_run = True
    if opt.gpu:
        model.to(opt.device)
    model.eval()

    # warm-up
    if opt.gpu:
        input_shape = (3,416,416)
        dummy_input = Variable(torch.randn(1,*input_shape))
        model.forward(dummy_input.to(opt.device))

    for i,(images,targets) in enumerate(dataloader):
        pic_num += opt.batch_size
        labels += targets[:,1].tolist()
        targets[:,2:] = xywh2xyxy(targets[:,2:])
        targets[:,2:] *= opt.image_size

        if opt.gpu:
            images = Variable(images.to(opt.device))
        t_start = time.time()
        detections = model.forward(images)
        t_end = time.time()
        detections = non_max_suppression(detections,opt.conf_thresh,opt.nms_thresh)

        print("forward time:"+str(t_end - t_start))
        total_time += t_end - t_start

        sample_matrics += get_batch_statistics(detections,targets,iou_threshold=0.5)

    print("Average time:"+str(total_time/pic_num) + "s")
    true_positives,pred_scores,pred_labels = [np.concatenate(x,0) for x in list(zip(*sample_matrics))]
    precision,recall,AP,f1,ap_class = ap_per_class(true_positives,pred_scores,pred_labels,labels)

    metric_table_data = [
        ['Metrics','Value'],['precision',precision.mean()],['recall',recall.mean()],
        ['f1',f1.mean()],['mAP',AP.mean()]]

    metric_table = AsciiTable(
        metric_table_data,
        title='[Epoch {:d}/{:d}'.format(epoch,opt.num_epochs))

    class_names = load_classe_names(opt.classname_path)
    for i,c in enumerate(ap_class):
        metric_table_data += [['AP-{}'.format(class_names[c]),AP[i]]]
    metric_table.table_data = metric_table_data
    print('{}\n'.format(metric_table.table))
Ejemplo n.º 4
0
def val(model, optimizer, dataloader, epoch, opt, val_logger, visualizer=None):
    labels = []
    sample_matrics = []
    for i, (images, targets) in enumerate(dataloader):
        labels += targets[:, 1].tolist()
        targets[:, 2:] = xywh2xyxy(targets[:, 2:])
        targets[:, 2:] *= opt.image_size

        outputs = model.forward(images)
        outputs = non_max_suppression(outputs, opt.conf_thres, opt.nms_thres)
        sample_matrics += get_batch_statistics(outputs,
                                               targets,
                                               iou_threshold=0.5)

        if visualizer is not None:
            vis.plot_current_visuals(images, outputs)

    true_positives, pred_scores, pred_labels = [
        np.concatenate(x, 0) for x in list(zip(*sample_matrics))
    ]
    precision, recall, AP, f1, ap_class = ap_per_class(true_positives,
                                                       pred_scores,
                                                       pred_labels, labels)

    # logging
    metric_table_data = [['Metrics', 'Value'], ['precision',
                                                precision.mean()],
                         ['recall', recall.mean()], ['f1', f1.mean()],
                         ['mAP', AP.mean()]]

    metric_table = AsciiTable(metric_table_data,
                              title='[Epoch {:d}/{:d}'.format(
                                  epoch, opt.num_epochs))
    print('{}\n\n\n'.format(metric_table.table))

    class_names = load_classe_names(opt.classname_path)
    for i, c in enumerate(ap_class):
        metric_table_data += [['AP-{}'.format(class_names[c]), AP[i]]]
    metric_table.table_data = metric_table_data
    val_logger.write('{}\n\n\n'.format(metric_table.table))
Ejemplo n.º 5
0
def detect(model, input, opt):
    w,h = input.size

    if not opt.no_pad2square:
        if w == h:
            image = input
        else:
            dim_diff = abs(w - h)
            padding_1,padding_2 = dim_diff // 2,dim_diff - dim_diff // 2
            padding = (0,padding_1,0,padding_2) if w > h else (padding_1,0,padding_2,0)
            image = F.pad(input,padding,fill=0,padding_mode='constant')
    else:
        image = input

    image = torchvision.transforms.ToTensor()(image).float().unsqueeze(0)
    image = resize(image,opt.image_size).float().unsqueeze(0)
    if opt.gpu:
        model.to(opt.device)
        image = image.to(opt.device)

    t_start = time.time()
    detections = model.forward(image)
    t_end = time.time()
    detections = non_max_suppression(detections,opt.conf_thresh,opt.nms_thresh)
    print(detections)

    print("inference time:" + str(t_end - t_start))
    class_names = load_classe_names(opt.classname_path)

    image = image.squeeze(0).transpose(0,1).transpose(1,2)
    detection = detections[0]

    fig,ax = plt.pyplot.subplots(1)
    plt.pyplot.axis('off')
    plt.pyplot.gca().xaxis.set_major_locator(plt.ticker.NullLocator())
    plt.pyplot.gca().yaxis.set_major_locator(plt.ticker.NullLocator())
    plt.pyplot.tight_layout(pad=0)

    ax.imshow(image.cpu().numpy())

    unique_labels = detection[:,-1].unique()
    num_cls_preds = len(unique_labels)
    color_map = plt.pyplot.get_cmap('tab20b')
    colors = [color_map(i) for i in np.linspace(0,1,opt.num_classes)]
    bbox_colors = random.sample(colors, num_cls_preds)

    for xmin, ymin, xmax, ymax, conf, cls_conf, cls_pred in detection:
        box_w = xmax - xmin
        box_h = ymax - ymin
        color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])]
        bbox = plt.patches.Rectangle((xmin,ymin),box_w,box_h,linewidth=2,edgecolor=color,facecolor="none")
        ax.add_patch(bbox)
        plt.pyplot.text(
            xmin,
            ymin,
            s='{} {:.4f}'.format(class_names[int(cls_pred)],cls_conf),
            color='white',
            verticalalignment='top',
            bbox={'color': color,'pad': 0},
        )
    plt.pyplot.show()
Ejemplo n.º 6
0
def train(model, optimizer, dataloader, epoch, opt, logger, visualizer=None):
    for i, (images, targets) in enumerate(dataloader):
        # targets: [idx, class_id, x, y, h, w] in yolo format
        # idx is used to associate the bounding boxes with its image
        # skip images without bounding boxes (mainly because coco has unlabelled images)
        if targets.size(0) == 0:
            continue

        batches_done = len(dataloader) * epoch + i
        if not opt.no_cuda:
            model = model.to(opt.device)
            images = Variable(images.to(opt.device))
            if targets is not None:
                targets = Variable(targets.to(opt.device), requires_grad=False)

        loss, detections = model.forward(images, targets)
        detections = non_max_suppression(detections.cpu(), opt.conf_thres,
                                         opt.nms_thres)
        loss.backward()

        if batches_done % opt.gradient_accumulations == 0 or i == len(
                dataloader) - 1:
            optimizer.step()
            optimizer.zero_grad()

        # logging
        metric_keys = model.yolo_layer52.metrics.keys()
        yolo_metrics = [
            model.yolo_layer52.metrics, model.yolo_layer26.metrics,
            model.yolo_layer13.metrics
        ]
        metric_table_data = [[
            'Metrics', 'YOLO Layer 0', 'YOLO Layer 1', 'YOLO Layer 2'
        ]]
        formats = {m: '%.6f' for m in metric_keys}
        for metric in metric_keys:
            row_metrics = [
                formats[metric] % ym.get(metric, 0) for ym in yolo_metrics
            ]
            metric_table_data += [[metric, *row_metrics]]
        metric_table_data += [[
            'total loss', '{:.6f}'.format(loss.item()), '', ''
        ]]
        # beautify log message
        metric_table = AsciiTable(
            metric_table_data,
            title='[Epoch {:d}/{:d}, Batch {:d}/{:d}]'.format(
                epoch, opt.num_epochs, i, len(dataloader)))
        metric_table.inner_footing_row_border = True
        logger.print_and_write('{}\n\n\n'.format(metric_table.table))

        if visualizer is not None and not opt.no_vis_preds:
            visualizer.plot_predictions(images.cpu(), detections,
                                        env='main')  # plot prediction
        if visualizer is not None and not opt.no_vis_gt:
            visualizer.plot_ground_truth(images.cpu(),
                                         targets.cpu(),
                                         env='main')  # plot ground truth

        metrics_to_vis = []
        # uncomment code below to plot the metrics of each YOLO layer
        # for j, ym in enumerate(yolo_metrics):
        #     for key, metric in ym.items():
        #         if key != 'grid_size':
        #             metrics_to_vis += [('{}_yolo_layer_{}'.format(key, j), metric)]
        metrics_to_vis += [('total_loss', loss.item())]
        if visualizer is not None:
            visualizer.plot_metrics(metrics_to_vis, batches_done, env='main')

    # save checkpoints
    if epoch % opt.checkpoint_interval == 0:
        save_file_path = os.path.join(opt.checkpoint_path,
                                      'epoch_{}.pth'.format(epoch))
        states = {
            'epoch': epoch + 1,
            'model': opt.model,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
        }
        torch.save(states, save_file_path)
Ejemplo n.º 7
0
def val(model, optimizer, dataloader, epoch, opt, val_logger, best_mAP=0):
    labels = []
    sample_matrics = []
    if opt.gpu:
        model = model.to(opt.device)
    model.eval()

    for i, (images, targets) in enumerate(dataloader):
        labels += targets[:, 1].tolist()
        targets[:, 2:] = xywh2xyxy(targets[:, 2:])
        targets[:, 2:] *= opt.image_size

        batches_done = len(dataloader) * epoch + i
        if opt.gpu:
            images = Variable(images.to(opt.device))

        detections = model.forward(images)
        detections = non_max_suppression(detections, opt.conf_thresh,
                                         opt.nms_thresh)
        sample_matrics += get_batch_statistics(detections,
                                               targets.cpu(),
                                               iou_threshold=0.5)

    true_positives, pred_scores, pred_labels = [
        np.concatenate(x, 0) for x in list(zip(*sample_matrics))
    ]
    precision, recall, AP, f1, ap_class = ap_per_class(true_positives,
                                                       pred_scores,
                                                       pred_labels, labels)

    # logging
    metric_table_data = [['Metrics', 'Value'], ['precision',
                                                precision.mean()],
                         ['recall', recall.mean()], ['f1', f1.mean()],
                         ['mAP', AP.mean()]]

    metric_table = AsciiTable(metric_table_data,
                              title='[Epoch {:d}/{:d}'.format(
                                  epoch, opt.num_epochs))

    class_names = load_classe_names(opt.classname_path)
    for i, c in enumerate(ap_class):
        metric_table_data += [['AP-{}'.format(class_names[c]), AP[i]]]
    metric_table.table_data = metric_table_data
    val_logger.print_and_write('{}\n'.format(metric_table.table))

    if best_mAP < AP.mean():
        save_file_path = os.path.join(opt.checkpoint_path, 'best.pth')
        states = {
            'epoch': epoch + 1,
            'model': opt.model,
            'state_dict': model.state_dict(),
            'optimizer': optimizer.state_dict(),
            'best_mAP': best_mAP,
        }
        torch.save(states, save_file_path)
        best_mAP = AP.mean()

    print("current best mAP:" + str(best_mAP))

    return best_mAP