Ejemplo n.º 1
0
    def sample(self, n_samples):
        ts = TimeSeries()
        ts.y = self.model.sample(n_samples)[0]
        ts.x = range(len(ts.y))

        out_path = "{}/plots/{}/sample.png".format(script_dir,
                                                   self.__class__.__name__)
        plot_procedures.plot_ts(ts, out_path, compress=True)
Ejemplo n.º 2
0
def simulate():
    ts_len = 1000
    l1 = np.random.normal(1, 0.2, ts_len)
    l2 = np.random.normal(5, 0.2, ts_len)
    l = np.append(l1, l2)

    ts = TimeSeries(compressed=True)
    ts.x = range(1, len(l) + 1)
    ts.y = l

    return ts
Ejemplo n.º 3
0
    def plot(self, server, mac, dt_start, dt_end, ts, hidden_state_path):
        ts_hidden_state_path = TimeSeries()
        ts_hidden_state_path.x = copy.deepcopy(ts.x)
        ts_hidden_state_path.y = copy.deepcopy(hidden_state_path)

        out_file_name = utils.get_out_file_name(server, mac, dt_start, dt_end)
        out_path = "{}/plots/{}/{}.png".format(script_dir,
                                               self.__class__.__name__,
                                               out_file_name)
        plot_procedures.plot_ts_share_x(
            ts,
            ts_hidden_state_path,
            out_path,
            compress=True,
            title1="raw time series",
            title2="best hidden state path",
            plot_type2="scatter",
            yticks2=range(self.model.n_components),
            ylim2=[-0.5, self.model.n_components - 0.5])