def main():
    parser = argparse.ArgumentParser(description='Voxelnet for semantic')
    parser.add_argument('--lr',
                        default=0.001,
                        type=float,
                        help='Initial learning rate')  # default=0.001(good)
    parser.add_argument('--epochs', default=2,
                        help='epochs')  # default=100, 50, 30
    parser.add_argument('--batchsize', default=4, help='epochs')  # default=32
    parser.add_argument('--weight_file', default='', help='weights to load')
    # log_ptn/train/Area_2_2019-09-11-11-43-48/checkpoint/checkpoint_0_max_mIoU_test_25.17065278824228.pth.tar
    parser.add_argument(
        '--test_area',
        type=int,
        default=2,
        help='Which area to use for test, option: 1-2 [default: 2]')
    parser.add_argument('--num_point',
                        type=int,
                        default=4096,
                        help='Point number [default: 4096]')

    args = parser.parse_args()
    NUM_POINT = args.num_point
    BATCH_SIZE = args.batchsize
    lr = args.lr
    ALL_FILES = getDataFiles(
        'indoor3d_sem_seg_hdf5_data/all_files.txt')  # .h5 file routes
    room_filelist = [
        line.rstrip()
        for line in open('indoor3d_sem_seg_hdf5_data/room_filelist.txt')
    ]

    # Load ALL data into a big data_batch & a big label_batch
    data_batch_list = []
    label_batch_list = []
    print(ALL_FILES)
    for h5_filename in ALL_FILES:
        h5_dir = os.path.join(
            '/home/chenkun/pointnet_pytorch-master/indoor3d_sem_seg_hdf5_data',
            h5_filename)
        f = h5py.File(h5_dir)
        data_batch = f['data'][:]
        label_batch = f['label'][:]
        data_batch_list.append(data_batch)
        label_batch_list.append(label_batch)
    data_batches = np.concatenate(data_batch_list, 0)
    label_batches = np.concatenate(label_batch_list, 0)
    print(data_batches.shape)
    print(label_batches.shape)

    test_area = 'Area_' + str(args.test_area)
    train_idxs = []
    test_idxs = []
    for i, room_name in enumerate(room_filelist):
        if test_area in room_name:
            test_idxs.append(i)
        else:
            train_idxs.append(i)

    train_data = data_batches[train_idxs, ...]
    train_label = label_batches[train_idxs].astype(np.int64)
    # test_data = data_batches[test_idxs, ...]      # ZZC
    # test_label = label_batches[test_idxs].astype(np.int64)  # ZZC

    test_data = train_data  # ZZC
    test_label = train_label  # ZZC

    print(train_data.shape, train_label.shape)
    print(test_data.shape, test_label.shape)

    time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    log_dir = os.path.join('log_ptn/train', test_area + '_' + time_string)

    if not os.path.exists(log_dir): os.makedirs(log_dir)

    checkpoint_dir = os.path.join(log_dir, 'checkpoint')
    if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir)

    start_epoch = 0
    epochs = args.epochs

    model = get_model()
    model.cuda()
    # print(model)

    optimizer = torch.optim.Adam(model.parameters(), lr)

    # class_names = ["ground", "vegetation", "building", "clutter"]    # ZZC
    class_names = ["T2T", "B2B", "BH", "BL", "V2V", "OT"]

    # Add weights to the loss function
    # weightsTrain = [0.04, 0.20, 0.12, 0.64]  # default
    # weightsTrain = [0.25, 0.25, 0.25, 0.25]
    # weightsTrain = [0.20, 0.50, 0.30, 0.50]
    weightsTrain = [0.2, 0.4, 0.6, 1.00, 1.00, 1.00]
    class_weights_Train = torch.FloatTensor(weightsTrain).cuda()
    criterionTrain = nn.CrossEntropyLoss(weight=class_weights_Train,
                                         size_average=True).cuda()
    # True: loss is averaged over each loss element in batch
    weightsVal = [0.2, 0.4, 0.6, 1.00, 1.00,
                  1.00]  # default  [0.08, 0.37, 0.15, 0.40]
    class_weights_Val = torch.FloatTensor(weightsVal).cuda()
    criterionVal = nn.CrossEntropyLoss(weight=class_weights_Val,
                                       size_average=True).cuda()

    if args.weight_file != '':
        pre_trained_model = torch.load(args.weight_file)
        start_epoch = pre_trained_model['epoch']
        model_state = model.state_dict()
        model_state.update(pre_trained_model['state_dict'])
        model.load_state_dict(model_state)

    #  #####################################################
    #    Start training
    #  #####################################################
    global_counter = 0
    max_mIoU_test = 0.0

    for epoch in range(start_epoch, epochs):
        learn_rate_now = adjust_learning_rate(optimizer, global_counter,
                                              BATCH_SIZE,
                                              lr)  # Seems not changing, ZZC

        iter_loss = 0.0  # Initialisation: loss for one epoch
        iterations = 0

        cm = ConfusionMatrix(6, class_names=class_names)
        cm.clear()

        model.train()

        train_data_shuffled, train_label_shuffled, _ = shuffle_data(
            train_data[:, 0:NUM_POINT, :], train_label)
        file_size = train_data_shuffled.shape[
            0]  # total number of training batches
        num_batches = file_size // BATCH_SIZE  # number of iterations in one epoch
        print('\nnum_batches(training):\t', num_batches)

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE

            feature = train_data_shuffled[start_idx:end_idx, :, :]
            label = train_label_shuffled[start_idx:end_idx]
            # print('Here')
            # print(feature.shape)
            # print(label.shape)

            # feature[:, :, 0:2] = 0.0
            # feature[:, :, 6:9] = 0.0
            # print(feature.shape)

            # print(feature[0, 0, 0])
            # print(feature[0, 0, 1])
            # print(feature[0, 0, 2])
            # print(feature[0, 0, 3])
            # print(feature[0, 0, 4])
            # print(feature[0, 0, 5])
            # print(feature[0, 0, 6])
            # print(feature[0, 0, 7])
            # print(feature[0, 0, 8])

            #

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(),
                             requires_grad=True)
            # print(input.size())

            input = torch.transpose(input, 3, 1)  # ? ZZC
            # print(input.size())

            target = Variable(torch.from_numpy(label).cuda(),
                              requires_grad=False)
            # print(target.size())

            target = target.view(-1, )
            # print(target.size())

            output = model(input)
            output_reshaped = output.permute(0, 3, 2,
                                             1).contiguous().view(-1, 6)

            # exit()  # for check, ZZC
            _, pred = torch.max(output.data, 1)
            pred = pred.view(-1, )
            cm.add_batch(target.cpu().numpy(), pred.cpu().numpy())  # detach()
            loss = criterionTrain(output_reshaped, target)
            iter_loss += loss.item()  # Accumulate the loss
            iterations += 1

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            global_counter += 1

            if batch_idx % 10 == 0:
                print('Epoch: [%3d][%3d]\t Loss: %.4f' %
                      (epoch, batch_idx, loss))  # Print loss for one bath

        # Print training results for 1 epoch
        iou0, iou1, iou2, iou3, iou4, iou5, mIoU = cm.class_IoU()
        print(
            'Epoch: [%3d]\t Train Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%' %
            (epoch, iter_loss / iterations, cm.overall_accuracy(),
             mIoU))  # Print loss for the epoch
        print(
            'T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%'
            % (iou0, iou1, iou2, iou3, iou4, iou5))

        with open(os.path.join(log_dir, 'train_log.txt'), 'a') as f:
            f.write(
                'Epoch: [%3d]\t Train Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%\n'
                % (epoch, iter_loss / iterations, cm.overall_accuracy(), mIoU))
            f.write(
                'T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%\n\n'
                % (iou0, iou1, iou2, iou3, iou4, iou5))

        #  #####################################################
        #    Start validation
        #  #####################################################
        model.eval()
        iter_loss = 0.0  # Initialisation: loss for one epoch
        iterations = 0
        cm = ConfusionMatrix(6, class_names=class_names)  # ZZC
        cm.clear()

        file_size = test_data.shape[0]
        num_batches = file_size // BATCH_SIZE
        print('num_batches(testing):\t', num_batches)

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE
            feature = test_data[start_idx:end_idx, :, :]
            label = test_label[start_idx:end_idx]

            # feature[:, :, 0:2] = 0.0
            # feature[:, :, 6:9] = 0.0

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(),
                             requires_grad=True)
            input = torch.transpose(input, 3, 1)  # ? ZZC
            target = Variable(torch.from_numpy(label).cuda(),
                              requires_grad=False)
            target = target.view(-1, )
            output = model(input)
            output_reshaped = output.permute(0, 3, 2,
                                             1).contiguous().view(-1, 6)

            _, pred = torch.max(output.data, 1)
            pred = pred.view(-1, )
            cm.add_batch(target.cpu().numpy(), pred.cpu().numpy())  # detach()

            loss = criterionVal(output_reshaped, target)
            iter_loss += loss.item()  # Accumulate the loss
            iterations += 1

        # Print validation results after 1 epoch
        iou0, iou1, iou2, iou3, iou4, iou5, mIoU = cm.class_IoU()
        print('Epoch: [%3d]\t Test Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%' %
              (epoch, iter_loss / iterations, cm.overall_accuracy(),
               mIoU))  # Print loss for the epoch
        print(
            'T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%'
            % (iou0, iou1, iou2, iou3, iou4, iou5))

        with open(os.path.join(log_dir, 'test_log.txt'), 'a') as f:
            f.write(
                'Epoch: [%3d]\t Test Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%\n'
                % (epoch, iter_loss / iterations, cm.overall_accuracy(), mIoU))
            f.write(
                'T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%\n\n'
                % (iou0, iou1, iou2, iou3, iou4, iou5))

        # Check whether best model, -> Save model
        if (mIoU > max_mIoU_test or epoch == epochs - 1):
            max_mIoU_test = mIoU
            print(
                '-> Best performance (test mIoU) achieved or This is final epoch.'
            )
            print('Max_mIoU in testing: %3.2f%%\n' % (max_mIoU_test))
            torch.save(
                {
                    'epoch': epoch + 1,
                    'args': args,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                },
                os.path.join(
                    checkpoint_dir, 'checkpoint_' + str(epoch) +
                    '_max_mIoU_test_' + str(mIoU) + '.pth.tar'))
def main():
    parser = argparse.ArgumentParser(description='Voxelnet for semantic')
    parser.add_argument('--lr',
                        default=0.001,
                        type=float,
                        help='Initial learning rate')
    parser.add_argument('--epochs', default=100, help='epochs')
    parser.add_argument('--batchsize', default=4, help='epochs')
    parser.add_argument('--weight_file', default='', help='weights to load')
    parser.add_argument(
        '--test_area',
        type=int,
        default=5,
        help='Which area to use for test, option: 1-6 [default: 6]')
    parser.add_argument('--num_point',
                        type=int,
                        default=4096,
                        help='Point number [default: 4096]')

    args = parser.parse_args()
    NUM_POINT = args.num_point
    BATCH_SIZE = args.batchsize
    lr = args.lr
    ALL_FILES = getDataFiles('indoor3d_sem_seg_hdf5_data/all_files.txt')
    room_filelist = [
        line.rstrip()
        for line in open('indoor3d_sem_seg_hdf5_data/room_filelist.txt')
    ]

    # Load ALL data
    data_batch_list = []
    label_batch_list = []
    for h5_filename in ALL_FILES:
        data_batch, label_batch = loadDataFile(h5_filename)
        data_batch_list.append(data_batch)
        label_batch_list.append(label_batch)
    data_batches = np.concatenate(data_batch_list, 0)
    label_batches = np.concatenate(label_batch_list, 0)
    print(data_batches.shape)
    print(label_batches.shape)

    test_area = 'Area_' + str(args.test_area)
    train_idxs = []
    test_idxs = []
    for i, room_name in enumerate(room_filelist):
        if test_area in room_name:
            test_idxs.append(i)
        else:
            train_idxs.append(i)

    train_data = data_batches[
        train_idxs, ...]  # ... means ellipsis, the same as [train_idxs, :, :]
    train_label = label_batches[train_idxs].astype(np.int64)
    test_data = data_batches[test_idxs, ...]
    test_label = label_batches[test_idxs].astype(np.int64)
    print(train_data.shape, train_label.shape)
    print(test_data.shape, test_label.shape)

    time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    log_dir = os.path.join('log_ptn/train', test_area + '_' + time_string)
    if not os.path.exists(log_dir): os.makedirs(log_dir)

    checkpoint_dir = os.path.join(log_dir, 'checkpoint')
    if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir)

    #writer = SummaryWriter(log_dir=os.path.join( log_dir, 'tensorboard'))

    start_epoch = 0
    epochs = args.epochs

    model = get_model()
    model.cuda()
    # print(model)

    optimizer = torch.optim.Adam(model.parameters(), lr)
    criterion = nn.CrossEntropyLoss().cuda()

    if args.weight_file != '':
        pre_trained_model = torch.load(args.weight_file)
        start_epoch = pre_trained_model['epoch']
        model_state = model.state_dict()
        model_state.update(pre_trained_model['state_dict'])
        model.load_state_dict(model_state)

    global_counter = 0
    for epoch in range(start_epoch, epochs):
        learn_rate_now = adjust_learning_rate(optimizer, global_counter,
                                              BATCH_SIZE, lr)
        #writer.add_scalar('train/learning_rate', learn_rate_now, global_counter)

        losses = AverageMeter()
        top1 = AverageMeter()
        model.train()

        train_data_shuffled, train_label_shuffled, _ = shuffle_data(
            train_data[:, 0:NUM_POINT, :], train_label)
        file_size = train_data_shuffled.shape[0]
        num_batches = file_size // BATCH_SIZE

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE
            feature = train_data_shuffled[start_idx:end_idx, :, :]
            label = train_label_shuffled[start_idx:end_idx]

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(),
                             requires_grad=True)
            input = torch.transpose(input, 3, 1)
            target = Variable(torch.from_numpy(label).cuda(),
                              requires_grad=False)
            target = target.view(-1, )
            output = model(input)
            output_reshaped = output.permute(0, 3, 2,
                                             1).contiguous().view(-1, 13)

            loss = criterion(output_reshaped, target)
            prec1 = accuracy(output_reshaped.data, target.data, topk=(1, ))
            #prec1[0] = prec1[0].cpu().numpy()[0]
            prec1 = prec1[0].cpu().numpy()
            #losses.update(loss.data[0], BATCH_SIZE)
            losses.update(loss.data, BATCH_SIZE)
            #top1.update(prec1[0], BATCH_SIZE)
            top1.update(prec1, BATCH_SIZE)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            print('Epoch: [{0}][{1}]\t'
                  'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                  'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(epoch,
                                                                  batch_idx,
                                                                  loss=losses,
                                                                  top1=top1))

            with open(os.path.join(log_dir, 'train_log.txt'), 'a') as f:
                f.write('Epoch: [{0}][{1}]\t'
                        'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
                        'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) \n'.format(
                            epoch, batch_idx, loss=losses, top1=top1))

            global_counter += 1

        #writer.add_scalar('train/loss', losses.avg, global_counter)
        #writer.add_scalar('train/accuracy', top1.avg, global_counter)

        losses = AverageMeter()
        top1 = AverageMeter()
        model.eval()

        file_size = test_data.shape[0]
        num_batches = file_size // BATCH_SIZE

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE
            feature = test_data[start_idx:end_idx, :, :]
            label = test_label[start_idx:end_idx]

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(),
                             requires_grad=True)
            input = torch.transpose(input, 3, 1)
            target = Variable(torch.from_numpy(label).cuda(),
                              requires_grad=False)
            target = target.view(-1, )
            output = model(input)
            output_reshaped = output.permute(0, 3, 2,
                                             1).contiguous().view(-1, 13)

            loss = criterion(output_reshaped, target)
            prec1 = accuracy(output_reshaped.data, target.data, topk=(1, ))
            #prec1[0] = prec1[0].cpu().numpy()[0]
            prec1 = prec1[0].cpu().numpy()
            #losses.update(loss.data[0], BATCH_SIZE)
            losses.update(loss.data, BATCH_SIZE)
            #top1.update(prec1[0], BATCH_SIZE)
            top1.update(prec1, BATCH_SIZE)

        #writer.add_scalar('val/loss', losses.avg, global_counter)
        #writer.add_scalar('val/accuracy', top1.avg, global_counter)

        print('Epoch {} Val Loss {:.3f} Val Acc {:.3f}  \t'.format(
            epoch, losses.avg, top1.avg))

        with open(os.path.join(log_dir, 'test_log.txt'), 'a') as f:
            f.write('Epoch: [{0}]\t'
                    'Loss {loss.avg:.4f} \t'
                    'Prec@1 {top1.avg:.3f} \n'.format(epoch,
                                                      loss=losses,
                                                      top1=top1))

        if (epoch % 5 == 0):
            torch.save(
                {
                    'epoch': epoch + 1,
                    'args': args,
                    'state_dict': model.state_dict(),
                    'optimizer': optimizer.state_dict()
                },
                os.path.join(checkpoint_dir,
                             'checkpoint_' + str(epoch) + '.pth.tar'))
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser(description='Voxelnet for semantic')
    parser.add_argument('--lr', default=0.001, type=float, help='Initial learning rate')
    parser.add_argument('--epochs', default=50, help='epochs')  # default=100
    parser.add_argument('--batchsize', default=4, help='epochs')   # default=32
    parser.add_argument('--weight_file', default='', help='weights to load')
    parser.add_argument('--test_area', type=int, default=2, help='Which area to use for test, option: 1-2 [default: 2]')
    parser.add_argument('--num_point', type=int, default=4096, help='Point number [default: 4096]')

    args = parser.parse_args()
    NUM_POINT = args.num_point
    BATCH_SIZE = args.batchsize
    lr = args.lr
    ALL_FILES = getDataFiles('indoor3d_sem_seg_hdf5_data/all_files.txt')
    room_filelist = [line.rstrip() for line in open('indoor3d_sem_seg_hdf5_data/room_filelist.txt')]

    # Load ALL data into a big data_batch & a big label_batch
    data_batch_list = []
    label_batch_list = []
    print(ALL_FILES)
    for h5_filename in ALL_FILES:
        # print(h5_filename)
        # data_batch, label_batch = loadDataFile(h5_filename)
        h5_dir = os.path.join('/home/chenkun/pointnet_pytorch-master/indoor3d_sem_seg_hdf5_data', h5_filename)
        f = h5py.File(h5_dir)
        data_batch = f['data'][:]
        label_batch = f['label'][:]
        data_batch_list.append(data_batch)
        label_batch_list.append(label_batch)

    data_batches = np.concatenate(data_batch_list, 0)
    label_batches = np.concatenate(label_batch_list, 0)
    print(data_batches.shape)
    print(label_batches.shape)

    test_area = 'Area_' + str(args.test_area)
    train_idxs = []
    test_idxs = []
    for i, room_name in enumerate(room_filelist):
        if test_area in room_name:
            test_idxs.append(i)
        else:
            train_idxs.append(i)

    train_data = data_batches[train_idxs, ...]
    train_label = label_batches[train_idxs].astype(np.int64)
    test_data = data_batches[test_idxs, ...]
    test_label = label_batches[test_idxs].astype(np.int64)
    print(train_data.shape, train_label.shape)
    print(test_data.shape, test_label.shape)

    time_string = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
    log_dir = os.path.join('log_ptn/train', test_area + '_' + time_string)
    if not os.path.exists(log_dir): os.makedirs(log_dir)

    checkpoint_dir = os.path.join(log_dir, 'checkpoint')
    if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir)

    writer = SummaryWriter(log_dir=os.path.join( log_dir, 'tensorboard'))

    start_epoch = 0
    epochs = args.epochs
    model = get_model()
    model.cuda()
    # print(model)

    optimizer = torch.optim.Adam(model.parameters(), lr)

    # class_names = ["ground", "vegetation", "building", "clutter"]    # ZZC
    class_names = ["T2T", "B2B", "BH", "BL", "V2V", "OT"]

    # Add weights to the loss function
    # weightsTrain = [0.04, 0.20, 0.12, 0.64]  # default
    # weightsTrain = [0.25, 0.25, 0.25, 0.25]
    # weightsTrain = [0.20, 0.50, 0.30, 0.50]
    weightsTrain = [0.2, 0.4, 0.6, 1.00, 1.00, 1.00]
    class_weights_Train = torch.FloatTensor(weightsTrain).cuda()
    criterionTrain = nn.CrossEntropyLoss(weight=class_weights_Train,
                                         size_average=True).cuda()
    # True: loss is averaged over each loss element in batch
    weightsVal = [0.2, 0.4, 0.6, 1.00, 1.00, 1.00]  # default  [0.08, 0.37, 0.15, 0.40]
    class_weights_Val = torch.FloatTensor(weightsVal).cuda()
    criterionVal = nn.CrossEntropyLoss(weight=class_weights_Val,
                                       size_average=True).cuda()

    #criterion = nn.CrossEntropyLoss().cuda()

    if args.weight_file != '':
        pre_trained_model = torch.load(args.weight_file)
        start_epoch = pre_trained_model['epoch']
        model_state = model.state_dict()
        model_state.update(pre_trained_model['state_dict'])
        model.load_state_dict(model_state)

    global_counter = 0
    max_mIoU_test = 0.0

    for epoch in range(start_epoch, epochs):
        learn_rate_now = adjust_learning_rate(optimizer, global_counter, BATCH_SIZE, lr)
        # writer.add_scalar('train/learning_rate', learn_rate_now, global_counter)
        #
        # losses = AverageMeter()
        # top1 = AverageMeter()
        # model.train()
        #
        # train_data_shuffled, train_label_shuffled, _ = shuffle_data(train_data[:, 0:NUM_POINT, :], train_label)
        # file_size = train_data_shuffled.shape[0]
        # num_batches = file_size // BATCH_SIZE
        iter_loss = 0.0  # Initialisation: loss for one epoch
        iterations = 0

        cm = ConfusionMatrix(6, class_names=class_names)
        cm.clear()

        model.train()

        train_data_shuffled, train_label_shuffled, _ = shuffle_data(train_data[:, 0:NUM_POINT, :], train_label)
        file_size = train_data_shuffled.shape[0]  # total number of training batches
        num_batches = file_size // BATCH_SIZE  # number of iterations in one epoch
        print('\nnum_batches(training):\t', num_batches)

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE

            feature = train_data_shuffled[start_idx:end_idx, :, :]
            label = train_label_shuffled[start_idx:end_idx]

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(), requires_grad=True)

            input = torch.transpose(input, 3, 1)

            target = Variable(torch.from_numpy(label).cuda(), requires_grad=False)

            target = target.view(-1,)

            output = model(input)
            output_reshaped = output.permute(0, 3, 2, 1).contiguous().view(-1, 6)

            _, pred = torch.max(output.data, 1)
            pred = pred.view(-1, )
            cm.add_batch(target.cpu().numpy(), pred.cpu().numpy())  # detach()
            loss = criterionTrain(output_reshaped, target)
            iter_loss += loss.item()  # Accumulate the loss
            iterations += 1

            loss = criterion(output_reshaped, target)
            prec1 = accuracy(output_reshaped.data, target.data, topk=(1,))
            prec1[0] = prec1[0].cpu().numpy()
            losses.update(loss.item(), BATCH_SIZE)
            top1.update(prec1[0], BATCH_SIZE)

            optimizer.zero_grad()
            loss.backward()
            optimizer.step()
            global_counter += 1

            if batch_idx%10==0:
                print('Epoch: [%3d][%3d]\t Loss: %.4f'%(epoch,batch_idx,loss))   # Print loss for one bath


            # print('Epoch: [{0}][{1}]\t'
            #       'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
            #       'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
            #     epoch, batch_idx, loss=losses, top1=top1))
            #
            # with open(os.path.join(log_dir,'train_log.txt'), 'a') as f:
            #     f.write('Epoch: [{0}][{1}]\t'
            #             'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
            #             'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) \n'.format(
            #         epoch, batch_idx, loss=losses, top1=top1))

        # Print training results for 1 epoch
        iou0, iou1, iou2, iou3, iou4, iou5, mIoU = cm.class_IoU()
        print('Epoch: [%3d]\t Train Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%' % (epoch, iter_loss / iterations, cm.overall_accuracy(), mIoU))  # Print loss for the epoch
        print('T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%' % (iou0, iou1, iou2, iou3, iou4, iou5))

        with open(os.path.join(log_dir, 'train_log.txt'), 'a') as f:
            f.write('Epoch: [%3d]\t Train Loss: %.4f\t OA: %3.2f%%\t mIoU : %3.2f%%\n' % (epoch, iter_loss / iterations, cm.overall_accuracy(), mIoU))
            f.write('T2T: %3.2f%%, B2B: %3.2f%%, BH: %3.2f%%, BL: %3.2f%%, V2V: %3.2f%%, OT: %3.2f%%\n\n' % (iou0, iou1, iou2, iou3, iou4, iou5))

            #global_counter += 1

        writer.add_scalar('train/loss', losses.avg, global_counter)
        writer.add_scalar('train/accuracy', top1.avg, global_counter)


        # losses = AverageMeter()
        # top1 = AverageMeter()
        model.eval()

        file_size = test_data.shape[0]
        num_batches = file_size // BATCH_SIZE

        for batch_idx in range(num_batches):
            start_idx = batch_idx * BATCH_SIZE
            end_idx = (batch_idx + 1) * BATCH_SIZE
            feature = test_data[start_idx:end_idx, :, :]
            label = test_label[start_idx:end_idx]

            feature = np.expand_dims(feature, axis=1)
            input = Variable(torch.from_numpy(feature).cuda(), requires_grad=True)
            input = torch.transpose(input, 3, 1)
            target = Variable(torch.from_numpy(label).cuda(), requires_grad=False)
            target = target.view(-1,)
            output = model(input)
            output_reshaped = output.permute(0, 3, 2, 1).contiguous().view(-1, 13)

            loss = criterion(output_reshaped, target)
            prec1 = accuracy(output_reshaped.data, target.data, topk=(1,))
            prec1[0] = prec1[0].cpu().numpy()
            losses.update(loss.item(), BATCH_SIZE)
            top1.update(prec1[0], BATCH_SIZE)

        writer.add_scalar('val/loss', losses.avg, global_counter)
        writer.add_scalar('val/accuracy', top1.avg, global_counter)

        print('Epoch {} Val Loss {:.3f} Val Acc {:.3f}  \t'
              .format(epoch, losses.avg, top1.avg))

        with open(os.path.join(log_dir, 'test_log.txt'), 'a') as f:
            f.write('Epoch: [{0}]\t'
                    'Loss {loss.avg:.4f} \t'
                    'Prec@1 {top1.avg:.3f} \n'.format(
                epoch, loss=losses, top1=top1))

        if(epoch % 5 == 0):
            torch.save(
                {'epoch': epoch + 1, 'args': args, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict()},
                os.path.join(checkpoint_dir, 'checkpoint_' + str(epoch) + '.pth.tar') )

    writer.close()