def test_evaluate_fn_with_tuple_of_trainable_variables(self):

    loss_builder = tf.keras.losses.MeanSquaredError
    metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()]

    def tff_model_fn():
      return tff.learning.from_keras_model(
          keras_model=model_builder(),
          input_spec=get_input_spec(),
          loss=loss_builder(),
          metrics=metrics_builder())

    iterative_process = tff.learning.build_federated_averaging_process(
        tff_model_fn, client_optimizer_fn=tf.keras.optimizers.SGD)
    state = iterative_process.initialize()
    test_dataset = create_tf_dataset_for_client(1)

    reference_model = tff.learning.ModelWeights(
        trainable=tuple(state.model.trainable),
        non_trainable=tuple(state.model.non_trainable))

    evaluate_fn = training_utils.build_evaluate_fn(test_dataset, model_builder,
                                                   loss_builder,
                                                   metrics_builder)

    test_metrics = evaluate_fn(reference_model)
    self.assertIn('loss', test_metrics)
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        schedule: Optional[str] = 'none',
        beta: Optional[float] = 0.,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        crop_size: Optional[int] = 24,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_cifar100',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the CIFAR-100 classification task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    crop_size: An optional integer representing the resulting size of input
      images after preprocessing.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    crop_shape = (crop_size, crop_size, 3)

    cifar_train, _, fed_test_data = cifar100_dataset.get_federated_cifar100(
        client_epochs_per_round=client_epochs_per_round,
        train_batch_size=client_batch_size,
        crop_shape=crop_shape,
        max_batches_per_client=max_batches_per_client)

    _, cifar_test = cifar100_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        crop_shape=crop_shape)

    input_spec = cifar_train.create_tf_dataset_for_client(
        cifar_train.client_ids[0]).element_spec

    model_builder = functools.partial(resnet_models.create_resnet18,
                                      input_shape=crop_shape,
                                      num_classes=NUM_CLASSES)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=cifar_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    test_fn = training_utils.build_unweighted_test_fn(
        federated_eval_dataset=fed_test_data,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())
    try:
        var = kwargs['hparam_dict']['var_q_clients']
        q_client = np.load(
            f'/home/monica/AVAIL_VECTORS/q_client_{var}_cifar.npy')
    except:
        logging.info(
            'Could not load q_client - initializing random availabilities')
        q_client = None

    if schedule == 'none':
        client_datasets_fn = training_utils.build_client_datasets_fn(
            train_dataset=cifar_train,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            use_p=True,
            q_client=q_client,
        )

        training_loop.run(iterative_process=training_process,
                          client_datasets_fn=client_datasets_fn,
                          validation_fn=evaluate_fn,
                          test_fn=test_fn,
                          total_rounds=total_rounds,
                          experiment_name=experiment_name,
                          root_output_dir=root_output_dir,
                          **kwargs)
    elif schedule == 'loss':
        if 'loss_pool_size' in kwargs['hparam_dict'] and kwargs['hparam_dict'][
                'loss_pool_size'] is not None:
            loss_pool_size = kwargs['hparam_dict']['loss_pool_size']
            logging.info(f'Loss pool size: {loss_pool_size}')
            client_datasets_fn = training_utils.build_client_datasets_fn(
                train_dataset=cifar_train,
                train_clients_per_round=loss_pool_size,
                random_seed=client_datasets_random_seed,
                var_q_clients=kwargs['hparam_dict']['var_q_clients'],
                f_mult=kwargs['hparam_dict']['f_mult'],
                f_intercept=kwargs['hparam_dict']['f_intercept'],
                sine_wave=kwargs['hparam_dict']['sine_wave'],
                use_p=True,
                q_client=q_client,
            )
            training_loop_loss.run(iterative_process=training_process,
                                   client_datasets_fn=client_datasets_fn,
                                   validation_fn=evaluate_fn,
                                   test_fn=test_fn,
                                   total_rounds=total_rounds,
                                   total_clients=loss_pool_size,
                                   experiment_name=experiment_name,
                                   root_output_dir=root_output_dir,
                                   **kwargs)
        else:
            raise ValueError('Loss pool size not specified')
    else:
        client_datasets_fn = training_utils.build_availability_client_datasets_fn(
            train_dataset=cifar_train,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            beta=beta,
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            q_client=q_client,
        )
        training_loop_importance.run(iterative_process=training_process,
                                     client_datasets_fn=client_datasets_fn,
                                     validation_fn=evaluate_fn,
                                     test_fn=test_fn,
                                     total_rounds=total_rounds,
                                     experiment_name=experiment_name,
                                     root_output_dir=root_output_dir,
                                     **kwargs)
Ejemplo n.º 3
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_emnist_ae',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the EMNIST autoencoder task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    emnist_train, _ = emnist_ae_dataset.get_emnist_datasets(
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_batches_per_client=max_batches_per_client,
        only_digits=False)

    _, emnist_test = emnist_ae_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        only_digits=False)

    input_spec = emnist_train.create_tf_dataset_for_client(
        emnist_train.client_ids[0]).element_spec

    model_builder = emnist_ae_models.create_autoencoder_model

    loss_builder = functools.partial(tf.keras.losses.MeanSquaredError,
                                     reduction=tf.keras.losses.Reduction.SUM)
    metrics_builder = lambda: [tf.keras.metrics.MeanSquaredError()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=emnist_train,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=evaluate_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
Ejemplo n.º 4
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))
    tff.backends.native.set_local_execution_context(max_fanout=10)

    model_builder = functools.partial(
        stackoverflow_models.create_recurrent_model,
        vocab_size=FLAGS.vocab_size,
        embedding_size=FLAGS.embedding_size,
        latent_size=FLAGS.latent_size,
        num_layers=FLAGS.num_layers,
        shared_embedding=FLAGS.shared_embedding)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    special_tokens = stackoverflow_dataset.get_special_tokens(FLAGS.vocab_size)
    pad_token = special_tokens.pad
    oov_tokens = special_tokens.oov
    eos_token = special_tokens.eos

    def metrics_builder():
        return [
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_with_oov',
                                                    masked_tokens=[pad_token]),
            keras_metrics.MaskedCategoricalAccuracy(name='accuracy_no_oov',
                                                    masked_tokens=[pad_token] +
                                                    oov_tokens),
            # Notice BOS never appears in ground truth.
            keras_metrics.MaskedCategoricalAccuracy(
                name='accuracy_no_oov_or_eos',
                masked_tokens=[pad_token, eos_token] + oov_tokens),
            keras_metrics.NumBatchesCounter(),
            keras_metrics.NumTokensCounter(masked_tokens=[pad_token]),
        ]

    datasets = stackoverflow_dataset.construct_word_level_datasets(
        FLAGS.vocab_size, FLAGS.client_batch_size,
        FLAGS.client_epochs_per_round, FLAGS.sequence_length,
        FLAGS.max_elements_per_user, FLAGS.num_validation_examples)
    train_dataset, validation_dataset, test_dataset = datasets

    if FLAGS.uniform_weighting:

        def client_weight_fn(local_outputs):
            del local_outputs
            return 1.0
    else:

        def client_weight_fn(local_outputs):
            return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=validation_dataset.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )

        dp_query = tff.utils.build_dp_query(
            clip=FLAGS.clip,
            noise_multiplier=FLAGS.noise_multiplier,
            expected_total_weight=FLAGS.clients_per_round,
            adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate,
            target_unclipped_quantile=FLAGS.target_unclipped_quantile,
            clipped_count_budget_allocation=FLAGS.
            clipped_count_budget_allocation,
            expected_clients_per_round=FLAGS.clients_per_round,
            per_vector_clipping=FLAGS.per_vector_clipping,
            model=model_fn())

        weights_type = tff.learning.framework.weights_type_from_model(model_fn)
        aggregation_process = tff.utils.build_dp_aggregate_process(
            weights_type.trainable, dp_query)
    else:
        aggregation_process = None

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')

    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weight_fn=client_weight_fn,
        client_optimizer_fn=client_optimizer_fn,
        aggregation_process=aggregation_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=validation_dataset,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    test_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=validation_dataset.concatenate(test_dataset),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=test_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
Ejemplo n.º 5
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        sequence_length: Optional[int] = 80,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_shakespeare',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on a Shakespeare next character prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      a `client_weight_fn`, and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    sequence_length: An int specifying the length of the character sequences
      used for prediction.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    train_clientdata = shakespeare_dataset.construct_character_level_datasets(
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        sequence_length=sequence_length,
        max_batches_per_client=max_batches_per_client)

    _, test_dataset = shakespeare_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        max_test_batches=max_eval_batches,
        sequence_length=sequence_length)

    model_builder = functools.partial(create_shakespeare_model,
                                      sequence_length=sequence_length)

    loss_builder = functools.partial(
        tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

    input_spec = train_clientdata.create_tf_dataset_for_client(
        train_clientdata.client_ids[0]).element_spec

    def client_weight_fn(local_outputs):
        # Num_tokens is a tensor with type int64[1], to use as a weight need
        # a float32 scalar.
        return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(
        tff_model_fn, client_weight_fn=client_weight_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=train_clientdata,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=test_dataset,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=evaluate_fn,
                      total_rounds=total_rounds,
                      total_clients=clients_per_round,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
Ejemplo n.º 6
0
def main(argv):
    if len(argv) > 1:
        raise app.UsageError('Expected no command-line arguments, '
                             'got: {}'.format(argv))

    emnist_train, emnist_test = emnist_dataset.get_emnist_datasets(
        FLAGS.client_batch_size,
        FLAGS.client_epochs_per_round,
        only_digits=False)

    if FLAGS.model == 'cnn':
        model_builder = functools.partial(
            emnist_models.create_conv_dropout_model, only_digits=False)
    elif FLAGS.model == '2nn':
        model_builder = functools.partial(
            emnist_models.create_two_hidden_layer_model, only_digits=False)
    else:
        raise ValueError('Cannot handle model flag [{!s}].'.format(
            FLAGS.model))

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    if FLAGS.uniform_weighting:

        def client_weight_fn(local_outputs):
            del local_outputs
            return 1.0

    else:
        client_weight_fn = None  #  Defaults to the number of examples per client.

    def model_fn():
        return tff.learning.from_keras_model(
            model_builder(),
            loss_builder(),
            input_spec=emnist_test.element_spec,
            metrics=metrics_builder())

    if FLAGS.noise_multiplier is not None:
        if not FLAGS.uniform_weighting:
            raise ValueError(
                'Differential privacy is only implemented for uniform weighting.'
            )

        dp_query = tff.utils.build_dp_query(
            clip=FLAGS.clip,
            noise_multiplier=FLAGS.noise_multiplier,
            expected_total_weight=FLAGS.clients_per_round,
            adaptive_clip_learning_rate=FLAGS.adaptive_clip_learning_rate,
            target_unclipped_quantile=FLAGS.target_unclipped_quantile,
            clipped_count_budget_allocation=FLAGS.
            clipped_count_budget_allocation,
            expected_clients_per_round=FLAGS.clients_per_round,
            per_vector_clipping=FLAGS.per_vector_clipping,
            model=model_fn())

        weights_type = tff.learning.framework.weights_type_from_model(model_fn)
        aggregation_process = tff.utils.build_dp_aggregate_process(
            weights_type.trainable, dp_query)
    else:
        aggregation_process = None

    server_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'server')
    client_optimizer_fn = optimizer_utils.create_optimizer_fn_from_flags(
        'client')
    iterative_process = tff.learning.build_federated_averaging_process(
        model_fn=model_fn,
        server_optimizer_fn=server_optimizer_fn,
        client_weight_fn=client_weight_fn,
        client_optimizer_fn=client_optimizer_fn,
        aggregation_process=aggregation_process)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        emnist_train, FLAGS.clients_per_round)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=emnist_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
    training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

    training_loop.run(iterative_process=iterative_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      hparam_dict=hparam_dict,
                      **training_loop_dict)
Ejemplo n.º 7
0
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        schedule: Optional[str] = 'none',
        beta: Optional[float] = 0.,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        model: Optional[str] = 'cnn',
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_synthetic',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        alpha: Optional[float] = 0.,
        beta_data: Optional[float] = 0.,
        iid: Optional[int] = 0,
        num_users: Optional[int] = 100,
        **kwargs):
    """Runs an iterative process on the EMNIST character recognition task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    model: A string specifying the model used for character recognition.
      Can be one of `cnn` and `2nn`, corresponding to a CNN model and a densely
      connected 2-layer model (respectively).
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """
    logging.info(f' DATA PARAMS: ')
    logging.info(f'             Num Users: {num_users}')
    logging.info(f'             alpha: {alpha}')
    logging.info(f'             beta: {beta_data}')
    logging.info(f'             iid: {iid}')
    train_data, test_data, federated_test = synthetic_dataset.generate_federated_softmax_data(
        batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        test_batch_size=100,
        alpha=alpha,
        beta=beta_data,
        iid=iid,
        num_users=num_users)

    input_spec = train_data.create_tf_dataset_for_client(
        train_data.client_ids[0]).element_spec

    model_builder = functools.partial(create_logistic_regression_model)

    loss_builder = tf.keras.losses.SparseCategoricalCrossentropy
    metrics_builder = lambda: [tf.keras.metrics.SparseCategoricalAccuracy()]

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    evaluate_fn = training_utils.build_evaluate_fn(
        eval_dataset=test_data,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)
    test_fn = training_utils.build_unweighted_test_fn(
        federated_eval_dataset=federated_test,
        model_builder=model_builder,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())
    try:
        var = kwargs['hparam_dict']['var_q_clients']
        print(f'Variance: {var}')
        q_client = np.load(
            f'/home/monica/AVAIL_VECTORS/q_client_{var}_synthetic.npy')
    #if q_client is None:
    #logging.info('Could not load q_client - initializing random availabilities')
    #q_client=None
    except:
        logging.info(
            'Could not load q_client - initializing random availabilities')
        q_client = None

    if schedule == 'none':
        client_datasets_fn = training_utils.build_client_datasets_fn(
            train_dataset=train_data,
            train_clients_per_round=clients_per_round,
            random_seed=client_datasets_random_seed,
            min_clients=kwargs['hparam_dict']['min_clients'],
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            use_p=True,
            q_client=q_client,
        )
        training_loop.run(iterative_process=training_process,
                          client_datasets_fn=client_datasets_fn,
                          validation_fn=evaluate_fn,
                          test_fn=test_fn,
                          total_rounds=total_rounds,
                          experiment_name=experiment_name,
                          root_output_dir=root_output_dir,
                          **kwargs)
    elif schedule == 'loss':
        if 'loss_pool_size' in kwargs['hparam_dict'] and kwargs['hparam_dict'][
                'loss_pool_size'] is not None:
            loss_pool_size = kwargs['hparam_dict']['loss_pool_size']
            logging.info(f'Loss pool size: {loss_pool_size}')

            client_datasets_fn = training_utils.build_client_datasets_fn(
                train_dataset=train_data,
                train_clients_per_round=loss_pool_size,
                random_seed=client_datasets_random_seed,
                min_clients=kwargs['hparam_dict']['min_clients'],
                var_q_clients=kwargs['hparam_dict']['var_q_clients'],
                f_mult=kwargs['hparam_dict']['f_mult'],
                f_intercept=kwargs['hparam_dict']['f_intercept'],
                sine_wave=kwargs['hparam_dict']['sine_wave'],
                use_p=True,
                q_client=q_client)
            training_loop_loss.run(iterative_process=training_process,
                                   client_datasets_fn=client_datasets_fn,
                                   validation_fn=evaluate_fn,
                                   test_fn=test_fn,
                                   total_rounds=total_rounds,
                                   total_clients=loss_pool_size,
                                   experiment_name=experiment_name,
                                   root_output_dir=root_output_dir,
                                   **kwargs)
        else:
            raise ValueError('Loss pool size not specified')
    else:
        init_p = kwargs['hparam_dict']['initialize_p']
        logging.info(f'Initializing as p = {init_p}')
        client_datasets_fn = training_utils.build_availability_client_datasets_fn(
            train_dataset=train_data,
            train_clients_per_round=clients_per_round,
            beta=beta,
            min_clients=kwargs['hparam_dict']['min_clients'],
            var_q_clients=kwargs['hparam_dict']['var_q_clients'],
            f_mult=kwargs['hparam_dict']['f_mult'],
            f_intercept=kwargs['hparam_dict']['f_intercept'],
            sine_wave=kwargs['hparam_dict']['sine_wave'],
            q_client=q_client,
            initialize_p=init_p,
        )
        training_loop_importance.run(iterative_process=training_process,
                                     client_datasets_fn=client_datasets_fn,
                                     validation_fn=evaluate_fn,
                                     test_fn=test_fn,
                                     total_rounds=total_rounds,
                                     experiment_name=experiment_name,
                                     root_output_dir=root_output_dir,
                                     **kwargs)
Ejemplo n.º 8
0
def run_federated(
    iterative_process_builder: Callable[..., tff.templates.IterativeProcess],
    client_epochs_per_round: int,
    client_batch_size: int,
    clients_per_round: int,
    max_batches_per_client: Optional[int] = -1,
    client_datasets_random_seed: Optional[int] = None,
    vocab_size: Optional[int] = 10000,
    num_oov_buckets: Optional[int] = 1,
    sequence_length: Optional[int] = 20,
    max_elements_per_user: Optional[int] = 1000,
    num_validation_examples: Optional[int] = 10000,
    embedding_size: Optional[int] = 96,
    latent_size: Optional[int] = 670,
    num_layers: Optional[int] = 1,
    shared_embedding: Optional[bool] = False,
    total_rounds: Optional[int] = 1500,
    experiment_name: Optional[str] = 'federated_so_nwp',
    root_output_dir: Optional[str] = '/tmp/fed_opt',
    max_eval_batches: Optional[int] = None,
    **kwargs):
  """Runs an iterative process on the Stack Overflow next word prediction task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, a
      `client_weight_fn` and returns a `tff.templates.IterativeProcess`. The
      `model_fn` must return a `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_size: Integer dictating the number of most frequent words to use in
      the vocabulary.
    num_oov_buckets: The number of out-of-vocabulary buckets to use.
    sequence_length: The maximum number of words to take for each sequence.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    embedding_size: The dimension of the word embedding layer.
    latent_size: The dimension of the latent units in the recurrent layers.
    num_layers: The number of stacked recurrent layers to use.
    shared_embedding: Boolean indicating whether to tie input and output
      embeddings.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

  model_builder = functools.partial(
      stackoverflow_models.create_recurrent_model,
      vocab_size=vocab_size,
      num_oov_buckets=num_oov_buckets,
      embedding_size=embedding_size,
      latent_size=latent_size,
      num_layers=num_layers,
      shared_embedding=shared_embedding)

  loss_builder = functools.partial(
      tf.keras.losses.SparseCategoricalCrossentropy, from_logits=True)

  special_tokens = stackoverflow_dataset.get_special_tokens(
      vocab_size, num_oov_buckets)
  pad_token = special_tokens.pad
  oov_tokens = special_tokens.oov
  eos_token = special_tokens.eos

  def metrics_builder():
    return [
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_with_oov', masked_tokens=[pad_token]),
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov', masked_tokens=[pad_token] + oov_tokens),
        # Notice BOS never appears in ground truth.
        keras_metrics.MaskedCategoricalAccuracy(
            name='accuracy_no_oov_or_eos',
            masked_tokens=[pad_token, eos_token] + oov_tokens),
        keras_metrics.NumBatchesCounter(),
        keras_metrics.NumTokensCounter(masked_tokens=[pad_token])
    ]

  train_clientdata, _, _ = tff.simulation.datasets.stackoverflow.load_data()

  # TODO(b/161914546): consider moving evaluation to use
  # `tff.learning.build_federated_evaluation` to get metrics over client
  # distributions, as well as the example weight means from this centralized
  # evaluation.
  _, validation_dataset, test_dataset = stackoverflow_dataset.get_centralized_datasets(
      vocab_size=vocab_size,
      max_seq_len=sequence_length,
      train_batch_size=client_batch_size,
      max_validation_batches=max_eval_batches,
      max_test_batches=max_eval_batches,
      num_validation_examples=num_validation_examples,
      num_oov_buckets=num_oov_buckets)

  train_dataset_preprocess_comp = stackoverflow_dataset.create_train_dataset_preprocess_fn(
      vocab=stackoverflow_dataset.create_vocab(vocab_size),
      num_oov_buckets=num_oov_buckets,
      client_batch_size=client_batch_size,
      client_epochs_per_round=client_epochs_per_round,
      max_seq_len=sequence_length,
      max_training_elements_per_user=max_elements_per_user,
      max_batches_per_user=max_batches_per_client)

  input_spec = train_dataset_preprocess_comp.type_signature.result.element

  def tff_model_fn() -> tff.learning.Model:
    return tff.learning.from_keras_model(
        keras_model=model_builder(),
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  def client_weight_fn(local_outputs):
    # Num_tokens is a tensor with type int64[1], to use as a weight need
    # a float32 scalar.
    return tf.cast(tf.squeeze(local_outputs['num_tokens']), tf.float32)

  training_process = iterative_process_builder(
      tff_model_fn, client_weight_fn=client_weight_fn)

  training_process = tff.simulation.compose_dataset_computation_with_iterative_process(
      train_dataset_preprocess_comp, training_process)

  client_datasets_fn = training_utils.build_client_datasets_fn(
      train_dataset=train_clientdata,
      train_clients_per_round=clients_per_round,
      random_seed=client_datasets_random_seed)

  evaluate_fn = training_utils.build_evaluate_fn(
      model_builder=model_builder,
      eval_dataset=validation_dataset,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  test_fn = training_utils.build_evaluate_fn(
      model_builder=model_builder,
      # Use both val and test for symmetry with other experiments, which
      # evaluate on the entire test set.
      eval_dataset=validation_dataset.concatenate(test_dataset),
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  logging.info('Training model:')
  logging.info(model_builder().summary())

  training_loop.run(
      iterative_process=training_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=evaluate_fn,
      test_fn=test_fn,
      total_rounds=total_rounds,
      experiment_name=experiment_name,
      root_output_dir=root_output_dir,
      **kwargs)
def run_federated(
        iterative_process_builder: Callable[...,
                                            tff.templates.IterativeProcess],
        client_epochs_per_round: int,
        client_batch_size: int,
        clients_per_round: int,
        max_batches_per_client: Optional[int] = -1,
        client_datasets_random_seed: Optional[int] = None,
        vocab_tokens_size: Optional[int] = 10000,
        vocab_tags_size: Optional[int] = 500,
        max_elements_per_user: Optional[int] = 1000,
        num_validation_examples: Optional[int] = 10000,
        total_rounds: Optional[int] = 1500,
        experiment_name: Optional[str] = 'federated_so_lr',
        root_output_dir: Optional[str] = '/tmp/fed_opt',
        max_eval_batches: Optional[int] = None,
        **kwargs):
    """Runs an iterative process on the Stack Overflow logistic regression task.

  This method will load and pre-process dataset and construct a model used for
  the task. It then uses `iterative_process_builder` to create an iterative
  process that it applies to the task, using
  `federated_research.utils.training_loop`.

  We assume that the iterative process has the following functional type
  signatures:

    *   `initialize`: `( -> S@SERVER)` where `S` represents the server state.
    *   `next`: `<S@SERVER, {B*}@CLIENTS> -> <S@SERVER, T@SERVER>` where `S`
        represents the server state, `{B*}` represents the client datasets,
        and `T` represents a python `Mapping` object.

  Moreover, the server state must have an attribute `model` of type
  `tff.learning.ModelWeights`.

  Args:
    iterative_process_builder: A function that accepts a no-arg `model_fn`, and
      returns a `tff.templates.IterativeProcess`. The `model_fn` must return a
      `tff.learning.Model`.
    client_epochs_per_round: An integer representing the number of epochs of
      training performed per client in each training round.
    client_batch_size: An integer representing the batch size used on clients.
    clients_per_round: An integer representing the number of clients
      participating in each round.
    max_batches_per_client: An optional int specifying the number of batches
      taken by each client at each round. If `-1`, the entire client dataset is
      used.
    client_datasets_random_seed: An optional int used to seed which clients are
      sampled at each round. If `None`, no seed is used.
    vocab_tokens_size: Integer dictating the number of most frequent words to
      use in the vocabulary.
    vocab_tags_size: Integer dictating the number of most frequent tags to use
      in the label creation.
    max_elements_per_user: The maximum number of elements processed for each
      client's dataset.
    num_validation_examples: The number of test examples to use for validation.
    total_rounds: The number of federated training rounds.
    experiment_name: The name of the experiment being run. This will be appended
      to the `root_output_dir` for purposes of writing outputs.
    root_output_dir: The name of the root output directory for writing
      experiment outputs.
    max_eval_batches: If set to a positive integer, evaluation datasets are
      capped to at most that many batches. If set to None or a nonpositive
      integer, the full evaluation datasets are used.
    **kwargs: Additional arguments configuring the training loop. For details
      on supported arguments, see
      `federated_research/utils/training_utils.py`.
  """

    stackoverflow_train, _, _ = stackoverflow_lr_dataset.get_stackoverflow_datasets(
        vocab_tokens_size=vocab_tokens_size,
        vocab_tags_size=vocab_tags_size,
        client_batch_size=client_batch_size,
        client_epochs_per_round=client_epochs_per_round,
        max_training_elements_per_user=max_elements_per_user,
        max_batches_per_user=max_batches_per_client,
        num_validation_examples=num_validation_examples)

    _, stackoverflow_validation, stackoverflow_test = stackoverflow_lr_dataset.get_centralized_datasets(
        train_batch_size=client_batch_size,
        vocab_tokens_size=vocab_tokens_size,
        vocab_tags_size=vocab_tags_size,
        num_validation_examples=num_validation_examples,
        max_validation_batches=max_eval_batches,
        max_test_batches=max_eval_batches)

    input_spec = stackoverflow_train.create_tf_dataset_for_client(
        stackoverflow_train.client_ids[0]).element_spec

    model_builder = functools.partial(
        stackoverflow_lr_models.create_logistic_model,
        vocab_tokens_size=vocab_tokens_size,
        vocab_tags_size=vocab_tags_size)

    loss_builder = functools.partial(tf.keras.losses.BinaryCrossentropy,
                                     from_logits=False,
                                     reduction=tf.keras.losses.Reduction.SUM)

    def tff_model_fn() -> tff.learning.Model:
        return tff.learning.from_keras_model(keras_model=model_builder(),
                                             input_spec=input_spec,
                                             loss=loss_builder(),
                                             metrics=metrics_builder())

    training_process = iterative_process_builder(tff_model_fn)

    client_datasets_fn = training_utils.build_client_datasets_fn(
        train_dataset=stackoverflow_train,
        train_clients_per_round=clients_per_round,
        random_seed=client_datasets_random_seed)

    evaluate_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        eval_dataset=stackoverflow_validation,
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    test_fn = training_utils.build_evaluate_fn(
        model_builder=model_builder,
        # Use both val and test for symmetry with other experiments, which
        # evaluate on the entire test set.
        eval_dataset=stackoverflow_validation.concatenate(stackoverflow_test),
        loss_builder=loss_builder,
        metrics_builder=metrics_builder)

    logging.info('Training model:')
    logging.info(model_builder().summary())

    training_loop.run(iterative_process=training_process,
                      client_datasets_fn=client_datasets_fn,
                      validation_fn=evaluate_fn,
                      test_fn=test_fn,
                      total_rounds=total_rounds,
                      experiment_name=experiment_name,
                      root_output_dir=root_output_dir,
                      **kwargs)
Ejemplo n.º 10
0
def run_experiment():
  """Data preprocessing and experiment execution."""
  emnist_train, emnist_test = emnist_dataset.get_emnist_datasets(
      FLAGS.client_batch_size,
      FLAGS.client_epochs_per_round,
      only_digits=FLAGS.only_digits)

  example_dataset = emnist_train.create_tf_dataset_for_client(
      emnist_train.client_ids[0])
  input_spec = example_dataset.element_spec

  client_datasets_fn = training_utils.build_client_datasets_fn(
      emnist_train, FLAGS.clients_per_round)

  evaluate_fn = training_utils.build_evaluate_fn(
      eval_dataset=emnist_test,
      model_builder=model_builder,
      loss_builder=loss_builder,
      metrics_builder=metrics_builder)

  client_optimizer_fn = functools.partial(
      utils_impl.create_optimizer_from_flags, 'client')
  server_optimizer_fn = functools.partial(
      utils_impl.create_optimizer_from_flags, 'server')

  def tff_model_fn():
    keras_model = model_builder()
    return tff.learning.from_keras_model(
        keras_model,
        input_spec=input_spec,
        loss=loss_builder(),
        metrics=metrics_builder())

  if FLAGS.use_compression:
    # We create a `MeasuredProcess` for broadcast process and a
    # `MeasuredProcess` for aggregate process by providing the
    # `_broadcast_encoder_fn` and `_mean_encoder_fn` to corresponding utilities.
    # The fns are called once for each of the model weights created by
    # tff_model_fn, and return instances of appropriate encoders.
    encoded_broadcast_process = (
        tff.learning.framework.build_encoded_broadcast_process_from_model(
            tff_model_fn, _broadcast_encoder_fn))
    encoded_mean_process = (
        tff.learning.framework.build_encoded_mean_process_from_model(
            tff_model_fn, _mean_encoder_fn))
  else:
    encoded_broadcast_process = None
    encoded_mean_process = None

  iterative_process = tff.learning.build_federated_averaging_process(
      model_fn=tff_model_fn,
      client_optimizer_fn=client_optimizer_fn,
      server_optimizer_fn=server_optimizer_fn,
      aggregation_process=encoded_mean_process,
      broadcast_process=encoded_broadcast_process)

  hparam_dict = utils_impl.lookup_flag_values(utils_impl.get_hparam_flags())
  training_loop_dict = utils_impl.lookup_flag_values(training_loop_flags)

  training_loop.run(
      iterative_process=iterative_process,
      client_datasets_fn=client_datasets_fn,
      validation_fn=evaluate_fn,
      hparam_dict=hparam_dict,
      **training_loop_dict)