def main(): #### setup options of three networks parser = argparse.ArgumentParser() parser.add_argument('-opt_P', type=str, help='Path to option YMAL file of Predictor.') parser.add_argument('-opt_C', type=str, help='Path to option YMAL file of Corrector.') parser.add_argument('-opt_F', type=str, help='Path to option YMAL file of SFTMD_Net.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt_P = option.parse(args.opt_P, is_train=True) opt_C = option.parse(args.opt_C, is_train=True) opt_F = option.parse(args.opt_F, is_train=True) # convert to NoneDict, which returns None for missing keys opt_P = option.dict_to_nonedict(opt_P) opt_C = option.dict_to_nonedict(opt_C) opt_F = option.dict_to_nonedict(opt_F) # choose small opt for SFTMD test opt_F = opt_F['sftmd'] #### random seed seed = opt_P['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) util.set_random_seed(seed) # create PCA matrix of enough kernel batch_ker = util.random_batch_kernel(batch=30000, l=opt_P['kernel_size'], sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=opt_P['code_length']).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt_P['dist'] = False opt_F['dist'] = False opt_C['dist'] = False rank = -1 print('Disabled distributed training.') else: opt_P['dist'] = True opt_F['dist'] = True opt_C['dist'] = True init_dist() world_size = torch.distributed.get_world_size() #Returns the number of processes in the current process group rank = torch.distributed.get_rank() #Returns the rank of current process group torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True ###### SFTMD train ###### SFTMD_train(opt_F, rank, world_size, pca_matrix) ###### Predictor&Corrector train ###### IKC_train(opt_P, opt_C, opt_F, rank, world_size, pca_matrix)
def main(): #### setup options of three networks parser = argparse.ArgumentParser() parser.add_argument('-opt_P', type=str, help='Path to option YMAL file of Predictor.') parser.add_argument('-opt_C', type=str, help='Path to option YMAL file of Corrector.') parser.add_argument('-opt_F', type=str, help='Path to option YMAL file of SFTMD_Net.') parser.add_argument('--launcher', choices=['none', 'pytorch'], default='none', help='job launcher') parser.add_argument('--local_rank', type=int, default=0) args = parser.parse_args() opt_P = option.parse(args.opt_P, is_train=True) opt_C = option.parse(args.opt_C, is_train=True) opt_F = option.parse(args.opt_F, is_train=True) # convert to NoneDict, which returns None for missing keys opt_P = option.dict_to_nonedict(opt_P) opt_C = option.dict_to_nonedict(opt_C) opt_F = option.dict_to_nonedict(opt_F) # choose small opt for SFTMD test, fill path of pre-trained model_F opt_F = opt_F['sftmd'] # create PCA matrix of enough kernel batch_ker = util.random_batch_kernel(batch=30000, l=opt_P['kernel_size'], sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=opt_P['code_length']).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) #### distributed training settings if args.launcher == 'none': # disabled distributed training opt_P['dist'] = False opt_F['dist'] = False opt_C['dist'] = False rank = -1 print('Disabled distributed training.') else: opt_P['dist'] = True opt_F['dist'] = True opt_C['dist'] = True init_dist() world_size = torch.distributed.get_world_size( ) #Returns the number of processes in the current process group rank = torch.distributed.get_rank( ) #Returns the rank of current process group torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True ###### Predictor&Corrector train ###### #### loading resume state if exists if opt_P['path'].get('resume_state', None): # distributed resuming: all load into default GPU device_id = torch.cuda.current_device() resume_state = torch.load( opt_P['path']['resume_state'], map_location=lambda storage, loc: storage.cuda(device_id)) option.check_resume(opt_P, resume_state['iter']) # check resume options else: resume_state = None #### mkdir and loggers if rank <= 0: # normal training (rank -1) OR distributed training (rank 0-7) if resume_state is None: # Predictor path util.mkdir_and_rename( opt_P['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt_P['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # Corrector path util.mkdir_and_rename( opt_C['path'] ['experiments_root']) # rename experiment folder if exists util.mkdirs( (path for key, path in opt_C['path'].items() if not key == 'experiments_root' and 'pretrain_model' not in key and 'resume' not in key)) # config loggers. Before it, the log will not work util.setup_logger('base', opt_P['path']['log'], 'train_' + opt_P['name'], level=logging.INFO, screen=True, tofile=True) util.setup_logger('val', opt_P['path']['log'], 'val_' + opt_P['name'], level=logging.INFO, screen=True, tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt_P)) logger.info(option.dict2str(opt_C)) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: version = float(torch.__version__[0:3]) if version >= 1.1: # PyTorch 1.1 from torch.utils.tensorboard import SummaryWriter else: logger.info( 'You are using PyTorch {}. Tensorboard will use [tensorboardX]' .format(version)) from tensorboardX import SummaryWriter tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt_P['name']) else: util.setup_logger('base', opt_P['path']['log'], 'train', level=logging.INFO, screen=True) logger = logging.getLogger('base') #### random seed seed = opt_P['train']['manual_seed'] if seed is None: seed = random.randint(1, 10000) if rank <= 0: logger.info('Random seed: {}'.format(seed)) util.set_random_seed(seed) torch.backends.cudnn.benchmark = True # torch.backends.cudnn.deterministic = True #### create train and val dataloader dataset_ratio = 200 # enlarge the size of each epoch for phase, dataset_opt in opt_P['datasets'].items(): if phase == 'train': train_set = create_dataset(dataset_opt) train_size = int( math.ceil(len(train_set) / dataset_opt['batch_size'])) total_iters = int(opt_P['train']['niter']) total_epochs = int(math.ceil(total_iters / train_size)) if opt_P['dist']: train_sampler = DistIterSampler(train_set, world_size, rank, dataset_ratio) total_epochs = int( math.ceil(total_iters / (train_size * dataset_ratio))) else: train_sampler = None train_loader = create_dataloader(train_set, dataset_opt, opt_P, train_sampler) if rank <= 0: logger.info( 'Number of train images: {:,d}, iters: {:,d}'.format( len(train_set), train_size)) logger.info('Total epochs needed: {:d} for iters {:,d}'.format( total_epochs, total_iters)) elif phase == 'val': val_set = create_dataset(dataset_opt) val_loader = create_dataloader(val_set, dataset_opt, opt_P, None) if rank <= 0: logger.info('Number of val images in [{:s}]: {:d}'.format( dataset_opt['name'], len(val_set))) else: raise NotImplementedError( 'Phase [{:s}] is not recognized.'.format(phase)) assert train_loader is not None assert val_loader is not None #### create model model_F = create_model(opt_F) #load pretrained model of SFTMD model_P = create_model(opt_P) model_C = create_model(opt_C) #### resume training if resume_state: logger.info('Resuming training from epoch: {}, iter: {}.'.format( resume_state['epoch'], resume_state['iter'])) start_epoch = resume_state['epoch'] current_step = resume_state['iter'] model_P.resume_training( resume_state) # handle optimizers and schedulers else: current_step = 0 start_epoch = 0 #### training logger.info('Start training from epoch: {:d}, iter: {:d}'.format( start_epoch, current_step)) for epoch in range(start_epoch, total_epochs + 1): if opt_P['dist']: train_sampler.set_epoch(epoch) for _, train_data in enumerate(train_loader): current_step += 1 if current_step > total_iters: break #### update learning rate, schedulers # model.update_learning_rate(current_step, warmup_iter=opt_P['train']['warmup_iter']) #### preprocessing for LR_img and kernel map prepro = util.SRMDPreprocessing(opt_P['scale'], pca_matrix, para_input=opt_P['code_length'], kernel=opt_P['kernel_size'], noise=False, cuda=True, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, rate_cln=0.2, noise_high=0.0) LR_img, ker_map = prepro(train_data['GT']) #### training Predictor model_P.feed_data(LR_img, ker_map) model_P.optimize_parameters(current_step) P_visuals = model_P.get_current_visuals() est_ker_map = P_visuals['Batch_est_ker_map'] #### log of model_P if current_step % opt_P['logger']['print_freq'] == 0: logs = model_P.get_current_log() message = 'Predictor <epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model_P.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) #### training Corrector for step in range(opt_C['step']): # test SFTMD for corresponding SR image model_F.feed_data(train_data, LR_img, est_ker_map) model_F.test() F_visuals = model_F.get_current_visuals() SR_img = F_visuals['Batch_SR'] # Test SFTMD to produce SR images # train corrector given SR image and estimated kernel map model_C.feed_data(SR_img, est_ker_map, ker_map) model_C.optimize_parameters(current_step) C_visuals = model_C.get_current_visuals() est_ker_map = C_visuals['Batch_est_ker_map'] #### log of model_C if current_step % opt_C['logger']['print_freq'] == 0: logs = model_C.get_current_log() message = 'Corrector <epoch:{:3d}, iter:{:8,d}, lr:{:.3e}> '.format( epoch, current_step, model_C.get_current_learning_rate()) for k, v in logs.items(): message += '{:s}: {:.4e} '.format(k, v) # tensorboard logger if opt_C['use_tb_logger'] and 'debug' not in opt_C[ 'name']: if rank <= 0: tb_logger.add_scalar(k, v, current_step) if rank <= 0: logger.info(message) # validation, to produce ker_map_list(fake) if current_step % opt_P['train']['val_freq'] == 0 and rank <= 0: avg_psnr = 0.0 idx = 0 for _, val_data in enumerate(val_loader): prepro = util.SRMDPreprocessing( opt_P['scale'], pca_matrix, para_input=opt_P['code_length'], kernel=opt_P['kernel_size'], noise=False, cuda=True, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, rate_cln=0.2, noise_high=0.0) LR_img, ker_map = prepro(val_data['GT']) single_img_psnr = 0.0 # valid Predictor model_P.feed_data(LR_img, ker_map) model_P.test() P_visuals = model_P.get_current_visuals() est_ker_map = P_visuals['Batch_est_ker_map'] for step in range(opt_C['step']): step += 1 idx += 1 model_F.feed_data(val_data, LR_img, est_ker_map) model_F.test() F_visuals = model_F.get_current_visuals() SR_img = F_visuals['Batch_SR'] # Test SFTMD to produce SR images model_C.feed_data(SR_img, est_ker_map, ker_map) model_C.test() C_visuals = model_C.get_current_visuals() est_ker_map = C_visuals['Batch_est_ker_map'] sr_img = util.tensor2img(F_visuals['SR']) # uint8 gt_img = util.tensor2img(F_visuals['GT']) # uint8 # Save SR images for reference img_name = os.path.splitext( os.path.basename(val_data['LQ_path'][0]))[0] img_dir = os.path.join(opt_P['path']['val_images'], img_name) # img_dir = os.path.join(opt_F['path']['val_images'], str(current_step), '_', str(step)) util.mkdir(img_dir) save_img_path = os.path.join( img_dir, '{:s}_{:d}_{:d}.png'.format( img_name, current_step, step)) util.save_img(sr_img, save_img_path) # calculate PSNR crop_size = opt_P['scale'] gt_img = gt_img / 255. sr_img = sr_img / 255. cropped_sr_img = sr_img[crop_size:-crop_size, crop_size:-crop_size, :] cropped_gt_img = gt_img[crop_size:-crop_size, crop_size:-crop_size, :] step_psnr = util.calculate_psnr( cropped_sr_img * 255, cropped_gt_img * 255) logger.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> img:{:s}, psnr: {:.4f}' .format(epoch, current_step, step, img_name, step_psnr)) single_img_psnr += step_psnr avg_psnr += util.calculate_psnr( cropped_sr_img * 255, cropped_gt_img * 255) avg_signle_img_psnr = single_img_psnr / step logger.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> img:{:s}, average psnr: {:.4f}' .format(epoch, current_step, step, img_name, avg_signle_img_psnr)) avg_psnr = avg_psnr / idx # log logger.info('# Validation # PSNR: {:.4f}'.format(avg_psnr)) logger_val = logging.getLogger('val') # validation logger logger_val.info( '<epoch:{:3d}, iter:{:8,d}, step:{:3d}> psnr: {:.4f}'. format(epoch, current_step, step, avg_psnr)) # tensorboard logger if opt_P['use_tb_logger'] and 'debug' not in opt_P['name']: tb_logger.add_scalar('psnr', avg_psnr, current_step) #### save models and training states if current_step % opt_P['logger']['save_checkpoint_freq'] == 0: if rank <= 0: logger.info('Saving models and training states.') model_P.save(current_step) model_P.save_training_state(epoch, current_step) model_C.save(current_step) model_C.save_training_state(epoch, current_step) if rank <= 0: logger.info('Saving the final model.') model_P.save('latest') model_C.save('latest') logger.info('End of Predictor and Corrector training.') tb_logger.close()
tofile=True) logger = logging.getLogger('base') logger.info(option.dict2str(opt_F)) # create PCA matrix of enough kernel batch_ker = util.random_batch_kernel(batch=30000, l=21, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=10).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) #### Create test dataset and dataloader test_loaders = [] for phase, dataset_opt in sorted(opt_F['datasets'].items()): test_set = create_dataset(dataset_opt) test_loader = create_dataloader(test_set, dataset_opt) logger.info('Number of test images in [{:s}]: {:d}'.format( dataset_opt['name'], len(test_set))) test_loaders.append(test_loader) # load pretrained model by default model_F = create_model(opt_F) for test_loader in test_loaders:
parser = argparse.ArgumentParser() parser.add_argument("-opt", type=str, help="Path to option YMAL file of SFTMD_Net.") parser.add_argument("--launcher", choices=["none", "pytorch"], default="none", help="job launcher") parser.add_argument("--local_rank", type=int, default=0) args = parser.parse_args() opt = option.parse(args.opt, is_train=True) # convert to NoneDict, which returns None for missing keys opt = option.dict_to_nonedict(opt) batch_ker = util.random_batch_kernel(batch=30000, l=11, sig_min=0.6, sig_max=5, rate_iso=0, scaling=3, tensor=False) print("batch kernel shape: {}".format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) pca_matrix = util.PCA(batch_ker, k=opt["code_length"]).float() print("PCA matrix shape: {}".format(pca_matrix.shape)) torch.save(pca_matrix, "./pca_matrix.pth") print("Save PCA matrix at: ./pca_matrix.pth")
def degradation_model(): # set parameters scale = 4 mod_scale = 4 # set data dir sourcedir = 'D:/NEU/ImageRestoration/div2k/Set5/HR/' savedir = 'D:/NEU/ImageRestoration/div2k/Set5/' # set random seed和 util.set_random_seed(0) # load PCA matrix of enough kernelh # print('load PCA matrix') # pca_matrix = torch.load('/media/sdc/yjchai/IKC/codes/pca_matrix.pth', map_location=lambda storage, loc: storage) # print('PCA matrix shape: {}'.format(pca_matrix.shape)) # 初始化kernelmap batch_ker = util.random_batch_kernel(batch=1000, k=15, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=3, tensor=False) print('batch kernel shape: {}'.format(batch_ker.shape)) b = np.size(batch_ker, 0) batch_ker = batch_ker.reshape((b, -1)) dim_pca = 15 # torch.Size([225, 15]) pca_matrix = util.PCA(batch_ker, dim_pca).float() print('PCA matrix shape: {}'.format(pca_matrix.shape)) # saveHRpath = os.path.join(savedir, 'HR') # saveLRpath = os.path.join(savedir, 'LR', 'x' + str(scale)) # saveBicpath = os.path.join(savedir, 'Bic', 'x' + str(scale)) saveLRblurpath = os.path.join(savedir, 'LRblur_sig0.6', 'X' + str(scale)) if not os.path.isdir(sourcedir): print('Error: No source data found') exit(0) if not os.path.isdir(savedir): os.mkdir(savedir) # if not os.path.isdir(os.path.join(savedir, 'HR')): # os.mkdir(os.path.join(savedir, 'HR')) # if not os.path.isdir(os.path.join(savedir, 'LR')): # os.mkdir(os.path.join(savedir, 'LR')) # if not os.path.isdir(os.path.join(savedir, 'Bic')): # os.mkdir(os.path.join(savedir, 'Bic')) if not os.path.isdir(os.path.join(savedir, 'LRblur_sig0.6')): os.mkdir(os.path.join(savedir, 'LRblur_sig0.6')) # if not os.path.isdir(saveHRpath): # os.mkdir(saveHRpath) # else: # print('It will cover ' + str(saveHRpath)) # if not os.path.isdir(saveLRpath): # os.mkdir(saveLRpath) # else: # print('It will cover ' + str(saveLRpath)) # if not os.path.isdir(saveBicpath): # os.mkdir(saveBicpath) # else: # print('It will cover ' + str(saveBicpath)) if not os.path.isdir(saveLRblurpath): os.mkdir(saveLRblurpath) else: print('It will cover ' + str(saveLRblurpath)) # 记得更改图片格式,不然无法生成 filepaths = sorted( [f for f in os.listdir(sourcedir) if f.endswith('.bmp')]) num_files = len(filepaths) # prepare data with augementation for i in range(num_files): filename = filepaths[i] print('No.{} -- Processing {}'.format((i + 1), filename)) # read image image_HR = cv2.imread(os.path.join(sourcedir, filename)) image = cv2.imread(os.path.join(sourcedir, filename)) width = int(np.floor(image.shape[1] / mod_scale)) height = int(np.floor(image.shape[0] / mod_scale)) # modcrop if len(image.shape) == 3: image_HR = image[0:mod_scale * height, 0:mod_scale * width, :] else: image_HR = image[0:mod_scale * height, 0:mod_scale * width] # LR_blur, by random gaussian kernel img_HR = util.img2tensor(image_HR) C, H, W = img_HR.size() # sig_list = [1.8, 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2] sig = 0.6 prepro = util.SRMDPreprocessing( scale, pca_matrix, random=False, kernel=15, noise=False, cuda=True, sig=sig, sig_min=0.2, sig_max=4.0, rate_iso=1.0, scaling=4, rate_cln=0.2, noise_high=0.0) #random(sig_min, sig_max) | stable kernel(sig) LR_img, ker_map = prepro(img_HR.view(1, C, H, W)) image_LR_blur = util.tensor2img(LR_img) cv2.imwrite( os.path.join(saveLRblurpath, 'sig{}_'.format(str(sig)) + filename), image_LR_blur) # LR # image_LR = imresize_np(image_HR, 1 / scale, True) # bic # image_Bic = imresize_np(image_LR, scale, True) # cv2.imwrite(os.path.join(saveHRpath, filename), image_HR) # cv2.imwrite(os.path.join(saveLRpath, filename), image_LR) # cv2.imwrite(os.path.join(saveBicpath, filename), image_Bic) # kernel_map_tensor[i] = ker_map # save dataset corresponding kernel maps # 1016windows下路径不可含特殊符号, # torch.save(kernel_map_tensor, 'D:/NEU/ImageRestoration/datasets/try/try_sig2.6_kermap.pth') print("Image Blurring & Down smaple Done: X" + str(scale))