Ejemplo n.º 1
0
def test_pix2pix_fid(model, opt):
    opt.phase = 'val'
    opt.num_threads = 0
    opt.batch_size = 1
    opt.serial_batches = True
    opt.no_flip = True
    opt.load_size = 256
    opt.display_id = -1
    dataset = create_dataset(opt)
    model.model_eval()

    result_dir = os.path.join(opt.checkpoints_dir, opt.name, 'test_results')
    util.mkdirs(result_dir)

    fake_B = {}
    for i, data in enumerate(dataset):
        model.set_input(data)
        with torch.no_grad():
            model.forward()
        visuals = model.get_current_visuals()
        fake_B[data['A_paths'][0]] = visuals['fake_B']
        util.save_images(visuals, model.image_paths, result_dir, direction=opt.direction,
                         aspect_ratio=opt.aspect_ratio)

    block_idx = InceptionV3.BLOCK_INDEX_BY_DIM[2048]
    inception_model = InceptionV3([block_idx])
    inception_model.to(model.device)
    inception_model.eval()
    npz = np.load(os.path.join(opt.dataroot, 'real_stat_B.npz'))
    fid = get_fid(list(fake_B.values()), inception_model, npz, model.device, opt.batch_size)

    return fid
Ejemplo n.º 2
0
    def __init__(self, opt, save_dir, filename='loss_log.txt'):
        self.display_id = opt.display_id
        self.use_html = not opt.no_html
        self.win_size = opt.display_winsize
        self.save_dir = save_dir
        self.name = os.path.basename(self.save_dir)
        self.saved = False
        self.display_single_pane_ncols = opt.display_single_pane_ncols

        # Error plots
        self.error_plots = dict()
        self.error_wins = dict()

        if self.display_id > 0:
            import visdom
            self.vis = visdom.Visdom(port=opt.display_port)

        if self.use_html:
            self.web_dir = os.path.join(self.save_dir, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
        self.log_name = os.path.join(self.save_dir, filename)
        with open(self.log_name, "a") as log_file:
            now = time.strftime("%c")
            log_file.write('================ Training Loss (%s) ================\n' % now)
Ejemplo n.º 3
0
    def parse(self, save=True):
        if not self.initialized:
            self.initialize()
        self.opt = self.parser.parse_args()
        self.opt.isTrain = self.isTrain   # train or test

        str_ids = self.opt.gpu_ids.split(',')
        self.opt.gpu_ids = []
        for str_id in str_ids:
            id = int(str_id)
            if id >= 0:
                self.opt.gpu_ids.append(id)
        
        # # set gpu ids
        # if len(self.opt.gpu_ids) > 0:
        #     torch.cuda.set_device(self.opt.gpu_ids[0])

        args = vars(self.opt)

        print('------------ Options -------------')
        for k, v in sorted(args.items()):
            print('%s: %s' % (str(k), str(v)))
        print('-------------- End ----------------')

        # save to the disk        
        expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
        util.mkdirs(expr_dir)
        if save and not self.opt.continue_train:
            file_name = os.path.join(expr_dir, 'opt.txt')
            with open(file_name, 'wt') as opt_file:
                opt_file.write('------------ Options -------------\n')
                for k, v in sorted(args.items()):
                    opt_file.write('%s: %s\n' % (str(k), str(v)))
                opt_file.write('-------------- End ----------------\n')
        return self.opt
Ejemplo n.º 4
0
    def parse(self):
        if not self.initialized:
            self.initialize()
        self.opt = self.parser.parse_args()
        self.opt.isTrain = self.isTrain  # train or test
        self.opt.name = self.name  # experiment name

        #str_ids = self.opt.gpu_ids.split(',')
        #self.opt.gpu_ids = []
        #for str_id in str_ids:
        #    id = int(str_id)
        #    if id >= 0:
        #        self.opt.gpu_ids.append(id)

        args = vars(self.opt)

        print('------------ Options -------------')
        for k, v in sorted(args.items()):
            print('%s: %s' % (str(k), str(v)))
        print('-------------- End ----------------')

        # save to the disk
        expr_dir = os.path.join(self.opt.checkpoint_dir, self.name)
        util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, 'opt.txt')
        with open(file_name, 'wt') as opt_file:
            opt_file.write('------------ Options -------------\n')
            for k, v in sorted(args.items()):
                opt_file.write('%s: %s\n' % (str(k), str(v)))
            opt_file.write('-------------- End ----------------\n')
        return self.opt
Ejemplo n.º 5
0
    def __init__(self, opt):

        self.opt = opt
        self.use_html = opt.use_html
        self.tf_log = opt.isTrain and not opt.use_html
        self.win_size = opt.display_winsize
        self.name = opt.name

        self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
        util.mkdir(self.log_dir)

        # if using tensorboard
        if self.tf_log:
            import tensorflow as tf
            self.tf = tf
            self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
            self.writer = tf.summary.FileWriter(self.log_dir)

        # if using simple html page
        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            util.mkdirs([self.web_dir, self.img_dir])

        # save test image results
        if not opt.isTrain:
            self.test_dir = os.path.join(opt.checkpoints_dir, opt.name,
                                         'test_img_out')
            util.mkdirs([self.test_dir])

        # log txt file head
        self.log_name_txt = os.path.join(opt.checkpoints_dir, opt.name,
                                         'loss_log.txt')
        with open(self.log_name_txt, "a") as log_file:
            now = time.strftime("%c")
            log_file.write(
                '================ Training Loss (%s) ================\n' % now)

        # log csv file head
        header = ['epoch', 'iters', 'time', 'loss_G', 'loss_D']
        self.log_name_csv = os.path.join(opt.checkpoints_dir, opt.name,
                                         'loss_log.csv')
        with open(self.log_name_csv, "w") as log_file:
            writer = csv.writer(log_file, delimiter=',')
            writer.writerow(header)

        # log csv file head for individual loss

        self.log_individual_csv = os.path.join(opt.checkpoints_dir, opt.name,
                                               'loss_individual_log.csv')
        with open(self.log_individual_csv, "w") as log_file:
            writer = csv.writer(log_file, delimiter=',')
            writer.writerow(header)

        # save loss graph as png
        self.error_plot = os.path.join(opt.checkpoints_dir, opt.name,
                                       'error_plot.png')
        self.individual_error_plot = os.path.join(opt.checkpoints_dir,
                                                  opt.name,
                                                  'individual_error_plot.png')
Ejemplo n.º 6
0
def resume_logger(opt):
    #  parser = argparse.ArgumentParser()
    #  parser.add_argument(
    #  '-opt', type=str, required=True, help='Path to option JSON file.')
    #  opt = option.parse(json_path, is_train=True)
    #  opt = option.dict_to_nonedict(
    #  opt)  # Convert to NoneDict, which return None for missing key.
    # train from scratch OR resume training
    if opt['path']['resume_state']:  # resuming training
        resume_state = torch.load(opt['path']['resume_state'])
    else:  # training from scratch
        resume_state = None
        util.mkdir_and_rename(
            opt['path']['experiments_root'])  # rename old folder if exists
        util.mkdirs((path for key, path in opt['path'].items()
                     if not key == 'experiments_root'
                     and 'pretrain_model' not in key and 'resume' not in key))
    # config loggers. Before it, the log will not work
    util.setup_logger(None,
                      opt['path']['log'],
                      'train',
                      level=logging.INFO,
                      screen=True)
    util.setup_logger('val', opt['path']['log'], 'val', level=logging.INFO)
    logger = logging.getLogger('base')
    return resume_state, logger
Ejemplo n.º 7
0
    def parse(self):
        if not self.initialized:
            self.initialize()
        self.opt = self.parser.parse_args()

        # str_ids = self.opt.gpu_ids.split(',')
        # self.opt.gpu_ids = []
        # for str_id in str_ids:
        #     id = int(str_id)
        #     if id >= 0:
        #         self.opt.gpu_ids.append(id)

        args = vars(self.opt)

        print('------------ Options -------------')
        for k, v in sorted(args.items()):
            print('%s: %s' % (str(k), str(v)))
        print('-------------- End ----------------')

        # save to the disk
        if self.opt.exp_id == '':
            print('Please set the experimental ID with option --exp_id')
            exit()
        exp_dir = os.path.join(self.opt.exp_dir, self.opt.exp_id)
        util.mkdirs(exp_dir)
        if self.opt.resume_prefix_pose != '':
            trunc_index = self.opt.resume_prefix_pose.index('pth')
            self.opt.resume_prefix_pose = self.opt.resume_prefix_pose[
                0:trunc_index - 1]
            self.opt.resume_prefix_pose += '-'
            # opt_name = self.opt.resume_prefix_pose + 'opt.txt'
            # opt_name = os.path.join(exp_dir, opt_name)
        # else:
        #     opt_name = os.path.join(exp_dir, 'opt.txt')
        if self.opt.resume_prefix_asn != '':
            trunc_index = self.opt.resume_prefix_asn.index('pth')
            self.opt.resume_prefix_asn = self.opt.resume_prefix_asn[
                0:trunc_index - 1]
            self.opt.resume_prefix_asn += '-'
            # opt_name = self.opt.resume_prefix_asdn + 'opt.txt'
            # opt_name = os.path.join(exp_dir, opt_name)
        # else:
        #     opt_name = os.path.join(exp_dir, 'opt.txt')
        if self.opt.resume_prefix_dropout != '':
            trunc_index = self.opt.resume_prefix_dropout.index('pth')
            self.opt.resume_prefix_dropout = self.opt.resume_prefix_dropout[
                0:trunc_index - 1]
            self.opt.resume_prefix_dropout += '-'
        if self.opt.resume_prefix_aug != '':
            trunc_index = self.opt.resume_prefix_aug.index('pth')
            self.opt.resume_prefix_aug = self.opt.resume_prefix_aug[
                0:trunc_index - 1]
            self.opt.resume_prefix_aug += '-'
        with open('opt.txt', 'wt') as opt_file:
            opt_file.write('------------ Options -------------\n')
            for k, v in sorted(args.items()):
                opt_file.write('%s: %s\n' % (str(k), str(v)))
            opt_file.write('-------------- End ----------------\n')
        return self.opt
Ejemplo n.º 8
0
def train(opt):
    # Prepare the training corpus
    print(options.TrainLogPrefix + "Prepare the training corpus begin!")
    from datasource.input_corpus import InputCorpus
    input_corpus = InputCorpus(opt.corpus_root, encoding=opt.encoding)
    print(options.TrainLogPrefix + "Prepare the training corpus end!")

    # Get the basic tfidf features
    print(options.TrainLogPrefix + "Get the basic tfidf features begin!")
    from feature.ngram_tfidf import NgramTfidf
    ngram_tfidf = NgramTfidf(input_corpus)
    ngram_tfidf.set_stopwords('./resource/stop_words_zh.utf8.txt')
    import numpy as np
    tfidf_mat, features = ngram_tfidf.get_tfidf_mat(top_k=opt.tfidf_top_k)
    tfidf_mat = np.asarray(tfidf_mat)
    features = np.asarray(features)
    targets = np.asarray(input_corpus.get_filenames_and_targets()[1])
    print(options.TrainLogPrefix + "Get the basic tfidf features end!")

    # Do feature selection
    print(options.TrainLogPrefix + "Do feature selection begin!")
    if opt.which_filter == 'mi':
        from feature.feature_selection import MISelection as FeatureSelection
        feature_selector = FeatureSelection(tfidf_mat,
                                            targets,
                                            mi_threshold=opt.mi_threshold)
    else:
        from feature.feature_selection import GBDTSelection as FeatureSelection
        feature_selector = FeatureSelection(tfidf_mat, targets)
    boolean_selection_index = feature_selector.get_boolean_selection_lst()
    filtered_tfidf_mat = tfidf_mat[:, boolean_selection_index]
    filtered_features = features[boolean_selection_index]
    print(options.TrainLogPrefix + "Do feature selection end!")

    # Training model
    print(options.TrainLogPrefix + "Training model begin!")
    if opt.which_classifier == 'svm':
        from model.classifier import SVMClassifier as Classifier
    else:
        from model.classifier import GBDTClassifier as Classifier
    classifier_model = Classifier()
    from model.classifier import Scorer
    scorer = Scorer(classifier_model.get_model(), filtered_tfidf_mat, targets)
    print(options.TrainLogPrefix + "Training model end!")
    scorer.show_score()

    # Save the model
    model_save_path = opt.path_to_save_model
    from utils import util
    util.mkdirs('/'.join(model_save_path.split('/')[:-1]))
    classifier_model.dump(filtered_tfidf_mat, targets, model_save_path)
    print(options.TrainLogPrefix + 'model save to ' + model_save_path)

    # Save the filtered features
    filtered_features_save_path = opt.path_to_save_model + options.FeaturesSaveSuffix
    df_vec = ngram_tfidf.numDocsContainingFeatures(filtered_features)
    save_features_df(df_vec, filtered_features, len(tfidf_mat),
                     filtered_features_save_path)
Ejemplo n.º 9
0
 def _save(self, args):
     expr_dir = os.path.join(self._opt.checkpoints_dir, self._opt.name)
     print(expr_dir)
     util.mkdirs(expr_dir)
     file_name = os.path.join(expr_dir, 'opt_%s.txt' % ('train' if self.is_train else 'test'))
     with open(file_name, 'wt') as opt_file:
         opt_file.write('------------ Options -------------\n')
         for k, v in sorted(args.items()):
             opt_file.write('%s: %s\n' % (str(k), str(v)))
         opt_file.write('-------------- End ----------------\n')
 def _save(self, args):
     expr_dir = os.path.join(self._opt.checkpoints_dir, self._opt.name)
     print(expr_dir)
     util.mkdirs(expr_dir)
     file_name = os.path.join(expr_dir, 'opt_%s.txt' % ('train' if self.is_train else 'test'))
     with open(file_name, 'wt') as opt_file:
         opt_file.write('------------ Options -------------\n')
         for k, v in sorted(args.items()):
             opt_file.write('%s: %s\n' % (str(k), str(v)))
         opt_file.write('-------------- End ----------------\n')
Ejemplo n.º 11
0
 def initialize(self, opt):
     self.opt = opt
     self.training = opt.isTrain
     self.gpu_ids = opt.gpu_ids
     self.isTrain = opt.isTrain
     self.num_classes = opt.label_nc
     self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
     self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
     self.tensorborad_dir = os.path.join(self.opt.checkpoints_dir, 'tensorboard', opt.dataset_mode)
     self.model_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name, 'model')
     util.mkdirs([self.tensorborad_dir, self.model_dir])
Ejemplo n.º 12
0
 def save_models(self, epoch, save_dir, fid=None, isbest=False, direction='AtoB'):
     util.mkdirs(save_dir)
     ckpt = {
         'G': self.netG.state_dict(),
         'D': self.netD.state_dict(),
         'epoch': epoch,
         'fid': fid
     }
     if isbest:
         torch.save(ckpt, os.path.join(save_dir, 'model_best_%s.pth' % direction))
     else:
         torch.save(ckpt, os.path.join(save_dir, 'model_%d.pth' % epoch))
Ejemplo n.º 13
0
def adaptive_personalize(opt, imitator, visualizer, output_path):
    output_dir = opt.output_dir
    mkdirs([os.path.join(output_dir, 'imgs'), os.path.join(output_dir, 'pairs')])

    # TODO check if it has been computed.
    print('\n\t\t\tPersonalization: meta imitation...')
    imitator.personalize(opt.src_path, visualizer=None, output_path = output_path)
    meta_imitate(opt, imitator, prior_tgt_path=opt.pri_path, visualizer=None, save_imgs=True)

    # post tune
    print('\n\t\t\tPersonalization: meta cycle finetune...')
    loader = make_dataset(opt)
    imitator.post_personalize(opt.output_dir, loader, visualizer=None, verbose=False)
Ejemplo n.º 14
0
def dir_check(opt):
    if opt['is_train']:
        # starting from scratch, needs to create training directory
        if not opt['path']['resume_state']:
            util.mkdir_and_rename(
                opt['path']['experiments_root'])  # rename old folder if exists
            util.mkdirs(
                (path for key, path in opt['path'].items()
                 if not key == 'experiments_root'
                 and 'pretrain_model' not in key and 'resume' not in key))
    else:
        # create testing directory
        util.mkdirs((path for key, path in opt['path'].items()
                     if not key == 'pretrain_model_G'))
Ejemplo n.º 15
0
    def save_networks(self, epoch):    
        mkdirs(self.save_dir)
        for name in self.model_names:
            if isinstance(name, str):
                save_filename = '%s_net_%s.pth' % (epoch, name)
                save_path = os.path.join(self.save_dir, save_filename)

                net = getattr(self, 'net' + name)

                if torch.cuda.is_available():
                    torch.save(net.cpu().state_dict(), save_path)
                    net.to(self.device)
                else:
                    torch.save(net.cpu().state_dict(), save_path)        
Ejemplo n.º 16
0
def test_pix2pix_mIoU(model, opt):
    opt.phase = 'val'
    opt.num_threads = 0
    opt.batch_size = 1
    opt.serial_batches = True
    opt.no_flip = True
    opt.load_size = 256
    opt.display_id = -1
    dataset = create_dataset(opt)
    model.model_eval()

    result_dir = os.path.join(opt.checkpoints_dir, opt.name, 'test_results')
    util.mkdirs(result_dir)

    fake_B = {}
    names = []
    for i, data in enumerate(dataset):
        model.set_input(data)

        with torch.no_grad():
            model.forward()

        visuals = model.get_current_visuals()
        fake_B[data['A_paths'][0]] = visuals['fake_B']

        for path in range(len(model.image_paths)):
            short_path = ntpath.basename(model.image_paths[0][0])
            name = os.path.splitext(short_path)[0]
            if name not in names:
                names.append(name)
        util.save_images(visuals,
                         model.image_paths,
                         result_dir,
                         direction=opt.direction,
                         aspect_ratio=opt.aspect_ratio)

    drn_model = DRNSeg('drn_d_105', 19, pretrained=False).to(model.device)
    util.load_network(drn_model, opt.drn_path, verbose=False)
    drn_model.eval()

    mIoU = get_mIoU(list(fake_B.values()),
                    names,
                    drn_model,
                    model.device,
                    table_path=os.path.join(opt.dataroot, 'table.txt'),
                    data_dir=opt.dataroot,
                    batch_size=opt.batch_size,
                    num_workers=opt.num_threads)
    return mIoU
Ejemplo n.º 17
0
 def initialize(self, opt):
     TIMESTAMP = "{0:%Y-%m-%dT%H-%M-%S/}".format(datetime.now())
     self.opt = opt
     self.training = opt.isTrain
     self.gpu_ids = opt.gpu_ids
     self.isTrain = opt.isTrain
     self.num_classes = opt.label_nc
     self.Tensor = torch.cuda.FloatTensor if self.gpu_ids else torch.Tensor
     self.save_dir = os.path.join(opt.checkpoints_dir, opt.name)
     self.tensorborad_dir = os.path.join(self.opt.checkpoints_dir,
                                         'tensorboard',
                                         opt.dataset_mode + TIMESTAMP)
     self.model_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name,
                                   'model')
     util.mkdirs([self.tensorborad_dir, self.model_dir])
Ejemplo n.º 18
0
 def save_models(self, epoch, save_dir, fid=None, isbest=False, direction='AtoB'):
     util.mkdirs(save_dir)
     ckpt = {
         'G_A': self.__pop_ops_params_state_dict(self.netG_A.state_dict()),
         'G_B': self.__pop_ops_params_state_dict(self.netG_B.state_dict()),
         'D_A': self.netD_A.state_dict(),
         'D_B': self.netD_B.state_dict(),
         'epoch': epoch,
         'cfg': (self.cfg_AtoB, self.cfg_BtoA),
         'fid': fid
     }
     if isbest:
         torch.save(ckpt, os.path.join(save_dir, 'model_best_%s.pth' % direction))
     else:
         torch.save(ckpt, os.path.join(save_dir, 'model_%d.pth' % epoch))
Ejemplo n.º 19
0
    def save_models(self, model, epoch, name, opt, isbest):

        save_dir = os.path.join(opt.checkpoints_dir, opt.name, 'checkpoints')
        utils.mkdirs(save_dir)
        ckpt = {
            'weight': model.module.state_dict(),
            'epoch': epoch,
            'cfg': opt.model,
            'index': name
        }
        if isbest:
            torch.save(ckpt, os.path.join(save_dir, 'model%s_best.pth' % name))
        else:
            torch.save(
                ckpt, os.path.join(save_dir, 'model%s_%d.pth' % (name, epoch)))
Ejemplo n.º 20
0
def meta_imitate(opt, imitator, prior_tgt_path, save_imgs=True, visualizer=None):
    src_path = opt.src_path

    all_tgt_paths = scan_tgt_paths(prior_tgt_path, itv=40)
    output_dir = opt.output_dir

    out_img_dir, out_pair_dir = mkdirs([os.path.join(output_dir, 'imgs'), os.path.join(output_dir, 'pairs')])

    img_pair_list = []

    for t in tqdm(range(len(all_tgt_paths))):
        tgt_path = all_tgt_paths[t]
        preds = imitator.inference([tgt_path], visualizer=visualizer, cam_strategy=opt.cam_strategy, verbose=False)

        tgt_name = os.path.split(tgt_path)[-1]
        out_path = os.path.join(out_img_dir, 'pred_' + tgt_name)

        if save_imgs:
            cv_utils.save_cv2_img(preds[0], out_path, normalize=True)
            write_pair_info(imitator.src_info, imitator.tsf_info,
                            os.path.join(out_pair_dir, '{:0>8}.pkl'.format(t)), imitator=imitator,
                            only_vis=opt.only_vis)

            img_pair_list.append((src_path, tgt_path))

    if save_imgs:
        write_pickle_file(os.path.join(output_dir, 'pairs_meta.pkl'), img_pair_list)
    def parse(self):
        if not self.initialized:
            self.initialize()
        self.opt = self.parser.parse_args()
        self.opt.isTrain = self.isTrain  # train or test

        args = vars(self.opt)

        if self.opt.dataset_mode == 'sample_per_vehicle':
            self.opt.frames_per_sample = max(self.opt.n_rgbs_per_sample,
                                             self.opt.n_bbs_per_sample)
            self.opt.input_channel_dim = 3 * self.opt.n_rgbs_per_sample + self.opt.n_bbs_per_sample
            self.opt.train_frames_to_remove = int(
                self.opt.train_frames_per_scene - self.opt.ttc_threshold * 10 -
                self.opt.frames_per_sample + 1)
            self.opt.valid_frames_to_remove = int(
                self.opt.valid_frames_per_scene - self.opt.ttc_threshold * 10 -
                self.opt.frames_per_sample + 1)
            self.opt.test_frames_to_remove = int(
                self.opt.test_frames_per_scene - self.opt.ttc_threshold * 10 -
                self.opt.frames_per_sample + 1)
        elif self.opt.dataset_mode == 'sample_per_frame':
            self.opt.input_channel_dim = 26
        else:
            print("Unknown dataset mode!")
            raise ValueError

        if self.opt.shuffle_by_which not in ['none', 'sample', 'frame']:
            print("Unknown shuffling method")
            raise ValueError

        print('------------ Options -------------')
        for k, v in sorted(args.items()):
            print('%s: %s' % (str(k), str(v)))
        print('-------------- End ----------------')

        if self.isTrain:
            # save to the disk
            expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
            util.mkdirs(expr_dir)
            file_name = os.path.join(expr_dir, 'opt.txt')
            with open(file_name, 'wt') as opt_file:
                opt_file.write('------------ Options -------------\n')
                for k, v in sorted(args.items()):
                    opt_file.write('%s: %s\n' % (str(k), str(v)))
                opt_file.write('-------------- End ----------------\n')
        return self.opt
Ejemplo n.º 22
0
    def __init__(self, opt):
        # self.opt = opt
        self.tf_log = opt.tf_log
        self.use_html = opt.isTrain and not opt.no_html
        self.win_size = opt.display_winsize
        self.name = opt.name
        if self.tf_log:
            import tensorflow as tf
            self.tf = tf
            self.log_dir = os.path.join(opt.checkpoints_dir, opt.name, 'logs')
            self.writer = tf.summary.FileWriter(self.log_dir)

        if self.use_html:
            self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web')
            self.img_dir = os.path.join(self.web_dir, 'images')
            print('create web directory %s...' % self.web_dir)
            util.mkdirs([self.web_dir, self.img_dir])
Ejemplo n.º 23
0
def setup_logging(opt, resume_state, rank):
    tb_logger = None
    if rank <= 0:  # normal training (rank -1) OR distributed training (rank 0)
        if resume_state is None:
            util.mkdir_and_rename(
                opt['path']
                ['experiments_root'])  # rename experiment folder if exists
            util.mkdirs(
                (path for key, path in opt['path'].items()
                 if not key == 'experiments_root'
                 and 'pretrain_model' not in key and 'resume' not in key))

        # config loggers. Before it, the log will not work
        util.setup_logger('base',
                          opt['path']['log'],
                          'train_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)
        util.setup_logger('val',
                          opt['path']['log'],
                          'val_' + opt['name'],
                          level=logging.INFO,
                          screen=True,
                          tofile=True)
        logger = logging.getLogger('base')
        logger.info(option.dict2str(opt))
        # tensorboard logger
        if opt['use_tb_logger'] and 'debug' not in opt['name']:
            version = float(torch.__version__[0:3])
            if version >= 1.1:  # PyTorch 1.1
                from torch.utils.tensorboard import SummaryWriter
            else:
                logger.info(
                    'You are using PyTorch {}. Tensorboard will use [tensorboardX]'
                    .format(version))
                from tensorboardX import SummaryWriter
            tb_logger = SummaryWriter(log_dir='../tb_logger/' + opt['name'])
    else:
        util.setup_logger('base',
                          opt['path']['log'],
                          'train',
                          level=logging.INFO,
                          screen=True)
        logger = logging.getLogger('base')
    return logger, tb_logger
Ejemplo n.º 24
0
def check_args(args):
    args.isTrain = args.phase == 'train'
    str_ids = args.gpu_ids.split(',')
    args.gpu_ids = []
    for str_id in str_ids:
        id = int(str_id)
        if id >= 0:
            args.gpu_ids.append(id)
    if len(args.gpu_ids) > 0:
        torch.cuda.set_device(args.gpu_ids[0])
    try:
        assert args.batch_size >= 1
    except:
        print('batch size must be larger than or equal to one')

    expr_dir = os.path.join(args.checkpoints_dir, args.name)
    util.mkdirs(expr_dir)
    return args
Ejemplo n.º 25
0
 def save(self, args):
     expr_dir = os.path.join(self.opt.checkpoints_dir, self.opt.name)
     print(expr_dir)
     util.mkdirs(expr_dir)
     file_name = os.path.join(expr_dir, 'opt_%s.txt' %
                              ('train' if self.is_train else 'test'))
     file_name_yaml = os.path.join(expr_dir, 'opt_%s.yaml' %
                                   ('train' if self.is_train else 'test'))
     with open(file_name_yaml, 'w') as opt_file:
         yaml.dump(args, opt_file)
     with open(file_name, 'wt') as opt_file:
         opt_file.write('------------ Options -------------\n')
         for k, v in sorted(args.items()):
             opt_file.write('%s: %s\n' % (str(k), str(v)))
         opt_file.write('-------------- End ----------------\n')
     file_name = os.path.join(expr_dir, 'command_line.txt')
     with open(file_name, 'wt') as opt_file:
         opt_file.write(" ".join(sys.argv))
Ejemplo n.º 26
0
 def save_models(self,
                 epoch,
                 save_dir,
                 fid=None,
                 isbest=False,
                 direction='AtoB'):
     util.mkdirs(save_dir)
     ckpt = {
         'G': self.__pop_ops_params_state_dict(self.netG.state_dict()),
         'D': self.netD.state_dict(),
         'epoch': epoch,
         'cfg': (self.filter_cfgs, self.channel_cfgs),
         'fid': fid
     }
     if isbest:
         torch.save(ckpt,
                    os.path.join(save_dir, 'model_best_%s.pth' % direction))
     else:
         torch.save(ckpt, os.path.join(save_dir, 'model_%d.pth' % epoch))
Ejemplo n.º 27
0
    def print_options(self, opt):
        message = ''
        message += '----------------- Options ---------------\n'
        for k, v in sorted(vars(opt).items()):
            comment = ''
            default = self.parser.get_default(k)
            if v != default:
                comment = '\t[default: %s]' % str(default)
            message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment)
        message += '----------------- End -------------------'
        print(message)

        # save to the disk
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        util.mkdirs(expr_dir)
        file_name = os.path.join(expr_dir, 'opt.txt')
        with open(file_name, 'wt') as opt_file:
            opt_file.write(message)
            opt_file.write('\n')
Ejemplo n.º 28
0
    def save_img_metric(self, img_dict, path, model_name, phase):
        util.mkdirs(os.path.join(path, model_name, phase, 'A2B', 'depth'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'A2B', 'normal'))
        util.mkdirs(os.path.join(path, model_name, phase, 'B2A', 'depth'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'B2A', 'normal'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'A2B2A', 'depth'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'A2B2A', 'normal'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'B2A2B', 'depth'))
#         util.mkdirs(os.path.join(path, model_name, phase, 'B2A2B', 'normal'))
        B_depth_fake = util.tensor2mm(img_dict['fake_depth_B'], self.opt)
        A_name = img_dict['name_A']
        
        A_depth_fake = util.tensor2mm(img_dict['fake_depth_A'], self.opt)
        B_name = img_dict['name_B']
        for i in range(B_depth_fake.shape[0]):                       
            imageio.imwrite(os.path.join(path, model_name, phase, 'A2B', 'depth', A_name[i]+'.png'), B_depth_fake[i])
#             imageio.imwrite(os.path.join(path, model_name, phase, 'A2B2A', 'depth', A_name[i]+'.png'), A_rec[i].astype(np.uint16))
#             np.save(os.path.join(path, model_name, phase, 'A2B', 'normal', A_name[i]+'.npy'), util.get_normal_metric(B_depth_fake[i]))
            imageio.imwrite(os.path.join(path, model_name, phase, 'B2A', 'depth', B_name[i]+'.png'), A_depth_fake[i])
Ejemplo n.º 29
0
 def save_img(self, img_dict, path, model_name, phase):
     util.mkdirs(os.path.join(path, model_name, phase, 'A'))
     util.mkdirs(os.path.join(path, model_name, phase, 'B'))
     A_imgs = util.tensor2im(img_dict['real_img_A'], self.opt, isDepth=False)
     A_depth = util.tensor2im(img_dict['real_depth_A'], self.opt, isDepth=True)*1000
     B_depth_fake = util.tensor2im(img_dict['fake_depth_B'], self.opt, isDepth=True)*1000
     A_name = img_dict['name_A']
     
     B_imgs = util.tensor2im(img_dict['real_img_B'], self.opt, isDepth=False)
     B_depth = util.tensor2im(img_dict['real_depth_B'], self.opt, isDepth=True)*1000
     A_depth_fake = util.tensor2im(img_dict['fake_depth_A'], self.opt, isDepth=True)*1000
     B_name = img_dict['name_B']
     for i in range(A_imgs.shape[0]):
         imageio.imwrite(os.path.join(path, model_name, phase, 'A', A_name[i]+'_img.png'), A_imgs[i])    
         imageio.imwrite(os.path.join(path, model_name, phase, 'A', A_name[i]+'_depth.png'), A_depth[i].astype(np.uint16))                        
         imageio.imwrite(os.path.join(path, model_name, phase, 'A', A_name[i]+'_depth_fake.png'), B_depth_fake[i].astype(np.uint16))
         imageio.imwrite(os.path.join(path, model_name, phase, 'B', B_name[i]+'_img.png'), B_imgs[i])
         imageio.imwrite(os.path.join(path, model_name, phase, 'B', B_name[i]+'_depth.png'), B_depth[i].astype(np.uint16))
         imageio.imwrite(os.path.join(path, model_name, phase, 'B', B_name[i]+'_depth_fake.png'), A_depth_fake[i].astype(np.uint16))
Ejemplo n.º 30
0
def get_options(json_path):
    """options"""
    #  parser = argparse.ArgumentParser()
    #  parser.add_argument(
    #  '-opt', type=str, required=True, help='Path to options JSON file.')
    #  opt = option.parse(parser.parse_args().opt, is_train=False)
    is_train = False
    opt = option.parse(json_path, is_train)
    util.mkdirs((path for key, path in opt['path'].items()
                 if not key == 'pretrain_model_G'))
    opt = option.dict_to_nonedict(opt)

    util.setup_logger(None,
                      opt['path']['log'],
                      'test',
                      level=logging.INFO,
                      screen=True)
    logger = logging.getLogger('base')
    logger.info(option.dict2str(opt))
    return opt, logger
Ejemplo n.º 31
0
    def print_options(opt):
        """print and save options"""

        # print('--------------Options--------------')
        # for k, v in sorted(vars(opt).items()):
        #     print('%s: %s' % (str(k), str(v)))
        # print('----------------End----------------')

        # save to the disk
        expr_dir = os.path.join(opt.checkpoints_dir, opt.name)
        util.mkdirs(expr_dir)
        if opt.isTrain:
            file_name = os.path.join(expr_dir, 'train_opt.txt')
        else:
            file_name = os.path.join(expr_dir, 'test_opt.txt')
        with open(file_name, 'wt') as opt_file:
            opt_file.write('--------------Options--------------\n')
            for k, v in sorted(vars(opt).items()):
                opt_file.write('%s: %s\n' % (str(k), str(v)))
            opt_file.write('----------------End----------------\n')