Ejemplo n.º 1
0
def flow_loader(path):
    if '.pfm' in path:
        data = readPFM(path)[0]
        data[:, :, 2] = 1
        return data
    else:
        return read_flow(path)
Ejemplo n.º 2
0
def disparity_loader(path):
    if '.png' in path:
        data = Image.open(path)
        data = np.ascontiguousarray(data, dtype=np.float32) / 256
        return data
    else:
        return readPFM(path)[0]
Ejemplo n.º 3
0
def read_pfm_file(flow_file):
    """
    Read from .pfm file
    :param flow_file: name of the flow file
    :return: optical flow data in matrix
    """
    (data, scale) = readPFM(flow_file)
    return data
Ejemplo n.º 4
0
def eval_f(fp):
    import warnings
    warnings.filterwarnings("ignore")
    # gt
    if '2015' in args.dataset:
        mask_gt = cv2.imread(maskp[fp], 0)
        flow_gt = read_flow(maskp[fp].replace('obj_map',
                                              'flow_occ')).astype(np.float32)
        validmask = flow_gt[:, :, -1] == 1
        bgmask_gt = np.logical_and(validmask, mask_gt == 0).astype(float)
    else:
        bgmask_gt = cv2.imread(maskp[fp], 0) > 0
        shape = bgmask_gt.shape[:2]
        validmask = np.ones(shape).astype(bool)
    shape = bgmask_gt.shape[:2]

    # pred
    flowpath = flow_paths[fp]
    # KITTI
    if '2015' in args.dataset:
        idnum = int(flowpath.split('/')[-1].split('_')[-2])
        if args.method == 'ours':
            maskp_pred = '%s/%s/pm-%06d_10.pfm' % (args.path, args.dataset,
                                                   idnum)
            mask_pred = readPFM(maskp_pred)[0].astype(int)
            bgmask_pred = mask_pred == 0
        elif args.method == 'detectron2':
            maskp_pred = '/data/gengshay/code/moseg/moseg-detectron2/%06d.png' % idnum
            mask_pred = cv2.imread(maskp_pred, 0)
            bgmask_pred = mask_pred == 0
        elif args.method == 'mrflowss':
            bgmask_pred = np.load(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_kitti_smodel/%06d_10.npy'
                % idnum)
            bgmask_pred = cv2.resize(bgmask_pred.astype(float),
                                     shape[::-1]).astype(bool)
        elif args.method == 'mrflowsk':
            bgmask_pred = cv2.imread(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_kitti_kmodel/%06d_10.png'
                % idnum, 0).astype(bool)
        elif args.method == 'u2net':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/U-2-Net/test_data/u2net_results/%06d_10.png'
                % idnum, 0) < 128
        elif args.method == 'rtn':
            bgmask_pred = ~cv2.imread(
                '/data/gengshay/code/learningrigidity_mod/output_kitti/%06d_10.png'
                % idnum, 0).astype(bool)
        elif args.method == 'fusionseg':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/kitti/results_liu/joint_davis_val/%06d_10_mask.npy'
                % idnum).astype(bool)
        elif args.method == 'fusionsegm':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/kitti/results_liu/motion/%06d_10_mask.npy'
                % idnum).astype(bool)
        elif args.method == 'cosnet':
            bgmask_pred = cv2.resize(
                cv2.imread(
                    '/data/gengshay/code/COSNet/result/test/davis_iteration_conf/Results/kitti/%06d_10.png'
                    % idnum, 0), shape[::-1]) < 128
        elif args.method == 'matnet':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/MATNet/output/kitti_liu/%06d_10.png' %
                idnum, 0) < 128
        elif args.method == 'cc':
            bgmask_pred = cv2.resize(
                np.load('/data/gengshay/code/cc/output/mask-joint/%03d.npy' %
                        idnum)[0], shape[::-1]) == 1
        elif args.method == 'ccm':
            bgmask_pred = cv2.resize(
                np.load('/data/gengshay/code/cc/output/mask-motion/%03d.npy' %
                        idnum)[0], shape[::-1]) == 1
        elif args.method == 'angle':
            maskp_pred = '%s/%s/pm-%06d_10.pfm' % (args.path, args.dataset,
                                                   idnum)
            mask_pred = readPFM(maskp_pred)[0].astype(int)
            bgmask_pred = mask_pred == 0
        else:
            exit()

    # Sintel
    else:
        passname = flowpath.split('/')[-1].split('_')[-4]
        seqname1 = flowpath.split('/')[-1].split('_')[-3]
        seqname2 = flowpath.split('/')[-1].split('_')[-2]
        framename = int(flowpath.split('/')[-1].split('_')[-1].split('.')[0])
        if args.method == 'ours':
            maskp_pred = '%s/%s/pm-Sintel_%s_%s_%s_%02d.pfm' % (
                args.path, args.dataset, passname, seqname1, seqname2,
                framename)
            mask_pred = readPFM(maskp_pred)[
                0]  # label map in {1,...N} given N rigid body predictions
            bgmask_pred = mask_pred == 0
        elif args.method == 'detectron2':
            maskp_pred = '/data/gengshay/code/moseg/smoseg-detectron2/Sintel_%s_%s_%s_%02d.png' % (
                passname, seqname1, seqname2, framename)
            mask_pred = cv2.imread(maskp_pred, 0)
            bgmask_pred = mask_pred == 0
        elif args.method == 'mrflowss':
            bgmask_pred = np.load(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_sintel_smodel/Sintel_%s_%s_%s_%02d.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'mrflowsk':
            bgmask_pred = cv2.imread(
                '/home/gengshay/code/SF/mrflow/semantic_rigidity_cvpr2017/output_sintel_kmodel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0).astype(bool)
        elif args.method == 'u2net':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/U-2-Net/test_data/u2net_results_sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0) < 128
        elif args.method == 'rtn':
            bgmask_pred = ~cv2.imread(
                '/data/gengshay/code/learningrigidity_mod/output_sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0).astype(bool)
        elif args.method == 'fusionseg':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/sintel/results/joint_davis_val/Sintel_%s_%s_%s_%02d_mask.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'fusionsegm':
            bgmask_pred = ~np.load(
                '/data/gengshay/code/fusionseg/python/sintel/results/motion/Sintel_%s_%s_%s_%02d_mask.npy'
                % (passname, seqname1, seqname2, framename)).astype(bool)
        elif args.method == 'cosnet':
            bgmask_pred = cv2.resize(
                cv2.imread(
                    '/data/gengshay/code/COSNet/result/test/davis_iteration_conf/Results/sintel/Sintel_%s_%s_%s_%02d.png'
                    % (passname, seqname1, seqname2, framename), 0),
                shape[::-1]) < 128
        elif args.method == 'matnet':
            bgmask_pred = cv2.imread(
                '/data/gengshay/code/MATNet/output/sintel/Sintel_%s_%s_%s_%02d.png'
                % (passname, seqname1, seqname2, framename), 0) < 128
        elif args.method == 'angle':
            maskp_pred = '%s/%s/pm-Sintel_%s_%s_%s_%02d.pfm' % (
                args.path, args.dataset, passname, seqname1, seqname2,
                framename)
            mask_pred = readPFM(maskp_pred)[0]
            bgmask_pred = mask_pred == 0
        else:
            exit()

    if args.method != 'ours' and args.method != 'detectron2':
        _, mask_pred = cv2.connectedComponentsWithAlgorithm(
            (1 - bgmask_pred.astype(np.uint8)),
            connectivity=8,
            ltype=cv2.CV_16U,
            ccltype=cv2.CCL_WU)

    # bg-iou
    try:
        bgiou = np.logical_and(
            bgmask_gt.astype(bool)[validmask],
            bgmask_pred[validmask]).sum() / np.logical_or(
                bgmask_gt.astype(bool)[validmask],
                bgmask_pred[validmask]).sum()
    except:
        pdb.set_trace()

    # obj-F (penalizes false positive)
    # defined in https://arxiv.org/abs/1902.03715 Sec.4
    # F=2PR/P+R => 2/(1/P+1/R)
    # since P = sum(|c and g|) / sum(|c|) and R = sum(|c and g|) / sum(|g|),
    #    where  c is prediction and g is GT
    # 1/P+1/R = [sum(|c|) + sum(|g|)] / sum(|c and g|)
    # therefore F = 2*sum(|c and g|) / [sum(|c|) +  sum(|g|)]
    if '2015' in args.dataset:
        gtlist = list(set(mask_gt.flatten()))
        M = len(gtlist) - 1
        imatrix = np.zeros((M, mask_pred.max()))
        fmatrix = np.zeros((M, mask_pred.max()))
        for i in range(M):  # for all bg instances
            objx_mask_gt = mask_gt == gtlist[i + 1]
            for j in range(mask_pred.max()):
                objx_mask_pred = mask_pred == j + 1
                imatrix[i, j] = float(
                    np.logical_and(objx_mask_gt,
                                   objx_mask_pred)[validmask].sum())
                fmatrix[i,
                        j] = imatrix[i,
                                     j] / (objx_mask_gt[validmask].sum() +
                                           objx_mask_pred[validmask].sum()) * 2
        ridx, cidx = scipy.optimize.linear_sum_assignment(1 - fmatrix)
        objf = imatrix[ridx, cidx].sum() / ((mask_pred > 0)[validmask].sum() +
                                            (mask_gt > 0)[validmask].sum()) * 2
    else:
        objf = 0.

    return bgiou, objf
Ejemplo n.º 5
0
import os
import sys
sys.path.insert(0, os.getcwd())
import cv2
import numpy as np
import glob
import argparse
from utils.util_flow import readPFM

parser = argparse.ArgumentParser(description='')
parser.add_argument('--datapath', default='', help='dataset path')
parser.add_argument('--outpath', default='', help='output path')
args = parser.parse_args()

for folder in glob.glob('%s/seq-*' % (args.datapath)):
    name = folder.split('seq-')[-1]
    dirpath = '%s/%s/' % (args.outpath, name)
    print(dirpath)
    if not os.path.isdir(dirpath): os.mkdir(dirpath)
    for filename in glob.glob('%s/pm*.pfm' % folder):
        frameid = filename.split('pm-')[-1].split('.pfm')[0]
        print(filename)
        mask_pred = readPFM(filename)[0].astype(int) > 0
        shape = mask_pred.shape
        mask_pred = np.stack(
            [np.zeros(shape),
             np.zeros(shape),
             mask_pred.astype(int) * 128], -1)
        cv2.imwrite('%s/%s.png' % (dirpath, frameid), mask_pred)
Ejemplo n.º 6
0
def pfm_to_flo(pfm_file):
    flow_filename = pfm_file[0:pfm_file.find('.pfm')] + '.flo'
    (data, scale) = readPFM(pfm_file)
    flow = data[:, :, 0:2]
    write_flow(flow, flow_filename)
Ejemplo n.º 7
0
parser.add_argument('--imgpath', default='',
                    help='dataset path')
args = parser.parse_args()

class Object(object):
    def has(self, name: str) -> bool:
        return name in self._fields
    def __getattr__(self, name: str) -> Any:
        if name == "_fields" or name not in self._fields:
            raise AttributeError("Cannot find field '{}' in the given Instances!".format(name))
        return self._fields[name]

frames=[]
for i,path in enumerate(sorted(glob.glob('%s/pm*'%args.datapath))):
    print(path)
    pred =  readPFM(path)[0]
    center_img = cv2.imread(path.replace('pm', 'mvis').replace('.pfm', '.jpg'))
    img = cv2.imread('%s/%s.png'%(args.imgpath,path.split('/')[-1].split('pm-')[1].split('.pfm')[0]))
    if img is None:
        img = cv2.imread('%s/%s.jpg'%(args.imgpath,path.split('/')[-1].split('pm-')[1].split('.pfm')[0]))
    shape = pred.shape[:2]
    num_instances = int(pred.max())

    # if no object detected
    if num_instances==0:
        _, pred =cv2.connectedComponentsWithAlgorithm((1-(pred==0).astype(np.uint8)),connectivity=8,ltype=cv2.CV_16U,ccltype=cv2.CCL_WU)
        num_instances = pred.max()

    if num_instances>0:
        pred_masks = torch.zeros((num_instances,)+shape).bool()
        for k in range(num_instances):