def evaluate(model: nn.Module, loader: dgl.dataloading.NodeDataLoader,
             loss_func: nn.Module, sampled_edge_type: str, device: str,
             mode: str):
    """

    :param model: model
    :param loader: data loader (validate or test)
    :param loss_func: loss function
    :param sampled_edge_type: str
    :param device: device str
    :param mode: str, evaluation mode, validate or test
    :return:
    """
    model.eval()
    with torch.no_grad():
        y_trues = []
        y_predicts = []
        total_loss = 0.0
        loader_tqdm = tqdm(loader, ncols=120)
        for batch, (input_nodes, positive_graph, negative_graph,
                    blocks) in enumerate(loader_tqdm):
            blocks = [convert_to_gpu(b, device=device) for b in blocks]
            positive_graph, negative_graph = convert_to_gpu(positive_graph,
                                                            negative_graph,
                                                            device=device)
            # target node relation representation in the heterogeneous graph
            input_features = {
                (stype, etype, dtype): blocks[0].srcnodes[dtype].data['feat']
                for stype, etype, dtype in blocks[0].canonical_etypes
            }

            nodes_representation, _ = model[0](blocks,
                                               copy.deepcopy(input_features))

            positive_score = model[1](positive_graph, nodes_representation,
                                      sampled_edge_type).squeeze(dim=-1)
            negative_score = model[1](negative_graph, nodes_representation,
                                      sampled_edge_type).squeeze(dim=-1)

            y_predict = torch.cat([positive_score, negative_score], dim=0)
            y_true = torch.cat([
                torch.ones_like(positive_score),
                torch.zeros_like(negative_score)
            ],
                               dim=0)

            loss = loss_func(y_predict, y_true)

            total_loss += loss.item()
            y_trues.append(y_true.detach().cpu())
            y_predicts.append(y_predict.detach().cpu())

            loader_tqdm.set_description(
                f'{mode} for the {batch}-th batch, {mode} loss: {loss.item()}')

        total_loss /= (batch + 1)
        y_trues = torch.cat(y_trues, dim=0)
        y_predicts = torch.cat(y_predicts, dim=0)

    return total_loss, y_trues, y_predicts
Ejemplo n.º 2
0
def evaluate(model: nn.Module, loader: dgl.dataloading.NodeDataLoader,
             loss_func: nn.Module, labels: torch.Tensor, predict_category: str,
             device: str, mode: str):
    """

    :param model: model
    :param loader: data loader (validate or test)
    :param loss_func: loss function
    :param labels: node labels
    :param predict_category: str
    :param device: device str
    :param mode: str, evaluation mode, validate or test
    :return:
    """
    model.eval()
    with torch.no_grad():
        y_trues = []
        y_predicts = []
        total_loss = 0.0
        loader_tqdm = tqdm(loader, ncols=120)
        for batch, (input_nodes, output_nodes,
                    blocks) in enumerate(loader_tqdm):
            blocks = [convert_to_gpu(b, device=device) for b in blocks]
            # target node relation representation in the heterogeneous graph
            input_features = {
                (stype, etype, dtype): blocks[0].srcnodes[dtype].data['feat']
                for stype, etype, dtype in blocks[0].canonical_etypes
            }

            nodes_representation, _ = model[0](blocks,
                                               copy.deepcopy(input_features))

            y_predict = model[1](nodes_representation[predict_category])

            # Tensor, (samples_num, )
            y_true = convert_to_gpu(labels[output_nodes[predict_category]],
                                    device=device)

            loss = loss_func(y_predict, y_true)

            total_loss += loss.item()
            y_trues.append(y_true.detach().cpu())
            y_predicts.append(y_predict.detach().cpu())

            loader_tqdm.set_description(
                f'{mode} for the {batch}-th batch, {mode} loss: {loss.item()}')

        total_loss /= (batch + 1)
        y_trues = torch.cat(y_trues, dim=0)
        y_predicts = torch.cat(y_predicts, dim=0)

    return total_loss, y_trues, y_predicts
                        for ntype in graph.ntypes
                    },
                    hidden_dim=args['hidden_units'],
                    relation_input_dim=args['relation_hidden_units'],
                    relation_hidden_dim=args['relation_hidden_units'],
                    num_layers=args['n_layers'],
                    n_heads=args['num_heads'],
                    dropout=args['dropout'],
                    residual=args['residual'])

    classifier = Classifier(n_hid=args['hidden_units'] * args['num_heads'],
                            n_out=num_classes)

    model = nn.Sequential(r_hgnn, classifier)

    model = convert_to_gpu(model, device=args['device'])
    print(model)

    print(f'Model #Params: {get_n_params(model)}.')

    print(f'configuration is {args}')

    save_model_path = f"../save_model/{args['dataset']}/{args['model_name']}/{args['model_name']}.pkl"

    # load model parameter
    model.load_state_dict(torch.load(save_model_path, map_location='cpu'))

    # evaluate the best model
    model.eval()

    nodes_representation, _ = model[0].inference(
Ejemplo n.º 4
0
    graph, labels, num_classes, train_idx, valid_idx, test_idx = load_dataset(data_path=args['data_path'],
                                                                              predict_category=args['predict_category'],
                                                                              data_split_idx_path=args[
                                                                                  'data_split_idx_path'])

    hgconv = HGConv(graph=graph,
                    input_dim_dict={ntype: graph.nodes[ntype].data['feat'].shape[1] for ntype in graph.ntypes},
                    hidden_dim=args['hidden_units'],
                    num_layers=args['n_layers'], n_heads=args['num_heads'], dropout=args['dropout'],
                    residual=args['residual'])

    classifier = Classifier(n_hid=args['hidden_units'] * args['num_heads'], n_out=num_classes)

    model = nn.Sequential(hgconv, classifier)

    model = convert_to_gpu(model, device=args['device'])
    print(model)

    print(f'Model #Params: {get_n_params(model)}')

    print(f'configuration is {args}')

    save_model_path = f"../save_model/{args['dataset']}/{args['model_name']}/{args['model_name']}.pkl"

    # load model parameter
    model.load_state_dict(torch.load(save_model_path, map_location='cpu'))

    print('performing model inference for test data...')
    # evaluate the best model
    model.eval()
Ejemplo n.º 5
0
                        for ntype in graph.ntypes
                    },
                    hidden_dim=args['hidden_units'],
                    relation_input_dim=args['relation_hidden_units'],
                    relation_hidden_dim=args['relation_hidden_units'],
                    num_layers=args['n_layers'],
                    n_heads=args['num_heads'],
                    dropout=args['dropout'],
                    residual=args['residual'])

    classifier = Classifier(n_hid=args['hidden_units'] * args['num_heads'],
                            n_out=num_classes)

    model = nn.Sequential(r_hgnn, classifier)

    model = convert_to_gpu(model, device=args['device'])
    print(model)

    print(f'Model #Params: {get_n_params(model)}.')

    print(f'configuration is {args}')

    optimizer, scheduler = get_optimizer_and_lr_scheduler(
        model,
        args['optimizer'],
        args['learning_rate'],
        args['weight_decay'],
        steps_per_epoch=len(train_loader),
        epochs=args['epochs'])

    save_model_folder = f"../save_model/{args['dataset']}/{args['model_name']}"
                    },
                    hidden_dim=args['hidden_units'],
                    relation_input_dim=args['relation_hidden_units'],
                    relation_hidden_dim=args['relation_hidden_units'],
                    num_layers=args['n_layers'],
                    n_heads=args['num_heads'],
                    dropout=args['dropout'],
                    residual=args['residual'],
                    norm=args['norm'])

    link_score_predictor = LinkScorePredictor(hid_dim=args['hidden_units'] *
                                              args['num_heads'])

    model = nn.Sequential(r_hgnn, link_score_predictor)

    model = convert_to_gpu(model, device=args['device'])
    print(model)

    print(f'Model #Params: {get_n_params(model)}.')

    print(f'configuration is {args}')

    optimizer, scheduler = get_optimizer_and_lr_scheduler(
        model,
        args['optimizer'],
        args['learning_rate'],
        args['weight_decay'],
        steps_per_epoch=len(train_loader),
        epochs=args['epochs'])

    save_model_folder = f"../save_model/{args['dataset']}/{args['model_name']}"