Ejemplo n.º 1
0
 def model_eval(self, preds, gts):
     # 1) IoU
     iou = gen_utils.iou(preds, gts)
     iou_pos = gen_utils.iou(preds, gts, True)
     # TODO: 2) Recall
     # 3) pixel-level accuracy (may not be suitable)
     accuracy = gen_utils.accuracy(preds, gts)
     return iou, iou_pos, accuracy
Ejemplo n.º 2
0
def validate_model(model, criterion, valid_loader, device):

    top1 = AverageMeter('Acc@1', ':6.2f')
    jacc1 = AverageMeter('Jacc_sim@1', ':6.2f')
    avgloss = AverageMeter('Loss', '1.5f')
    val_loss = 0.0

    model.eval()
    with torch.no_grad():
        for data in valid_loader:
            image, target = data['image'].to(
                device, dtype=torch.float), data['label'].to(device)
            output = model(image)

            loss = criterion(output, target)

            val_loss += loss.cpu().detach().numpy()

            acc1, jacc = iou(output, target)

            top1.update(acc1, image.size(0))
            avgloss.update(loss, image.size(0))
            jacc1.update(jacc, image.size(0))

    return avgloss.avg, top1.avg, jacc1.avg
Ejemplo n.º 3
0
def train_one_epoch(model, criterion, optimizer, data_loader, device):

    top1 = AverageMeter('Acc@1', ':6.2f')
    avgloss = AverageMeter('Loss', '1.5f')
    jacc1 = AverageMeter('Jacc_sim@1', ':6.2f')
    train_loss = 0.0
    model.train()
    for data in tqdm(data_loader):

        model.to(device)

        image, target = data['image'].to(
            device, dtype=torch.float), data['label'].to(device)

        output = model(image)

        loss = criterion(output, target)

        optimizer.zero_grad()

        loss.backward()

        optimizer.step()

        train_loss += loss.cpu().detach().numpy()

        acc1, jacc = iou(output, target)

        top1.update(acc1, image.size(0))
        avgloss.update(loss, image.size(0))
        jacc1.update(jacc, image.size(0))

    return avgloss.avg, top1.avg, jacc1.avg
Ejemplo n.º 4
0
def validate(net, Dataloader):
    '''
    Test on validation dataset
    :param net: net to evaluate
    :param Dataloader: data to evaluate
    :return:
    '''

    dtype = torch.cuda.FloatTensor
    dtype_t = torch.cuda.LongTensor

    dir_name = 'save_img/validate/'
    if not os.path.exists(dir_name):
        os.makedirs(dir_name)

    len_dl = len(Dataloader)
    print(len_dl)

    nu = 0
    de = 0
    for step, data in enumerate(Dataloader):
        labels = data[4].numpy()
        xx = Variable(data[0].type(dtype))
        re = net.module.test(xx, 60)
        for i in range(len(re)):
            labels_p = re.cpu().numpy()[i]
            vertices1 = label2vertex(labels_p)
            vertices2 = label2vertex(labels[i])

            color = [np.random.randint(0, 255) for _ in range(3)]
            color += [100]
            color = tuple(color)

            img_array = tensor2img(data[0][i])

            img = Image.fromarray(img_array)
            drw = ImageDraw.Draw(img, 'RGBA')
            drw.polygon(vertices1, color)
            img.save(dir_name + str(step) + '_' + str(i) + '_pred.png', 'PNG')

            img = Image.fromarray(img_array)
            drw = ImageDraw.Draw(img, 'RGBA')
            drw.polygon(vertices2, color)
            img.save(dir_name + str(step) + '_' + str(i) + '_gt.png', 'PNG')

            _, nu_this, de_this = iou(vertices1, vertices2, 224, 224)
            nu += nu_this
            de += de_this

    print('iou: {}'.format(nu * 1.0 / de))
Ejemplo n.º 5
0
    def encode(self, gt_data, overlap_threshold=0.5, debug=False):
        # calculation is done with normalized sizes

        # TODO: empty ground truth
        if gt_data.shape[0] == 0:
            print('gt_data', type(gt_data), gt_data.shape)

        num_classes = 2
        num_priors = self.priors.shape[0]

        gt_polygons = np.copy(gt_data[:, :8])  # normalized quadrilaterals
        gt_rboxes = np.array(
            [polygon_to_rbox3(np.reshape(p, (-1, 2))) for p in gt_data[:, :8]])

        # minimum horizontal bounding rectangles
        gt_xmin = np.min(gt_data[:, 0:8:2], axis=1)
        gt_ymin = np.min(gt_data[:, 1:8:2], axis=1)
        gt_xmax = np.max(gt_data[:, 0:8:2], axis=1)
        gt_ymax = np.max(gt_data[:, 1:8:2], axis=1)
        gt_boxes = self.gt_boxes = np.array(
            [gt_xmin, gt_ymin, gt_xmax,
             gt_ymax]).T  # normalized xmin, ymin, xmax, ymax

        gt_class_idx = np.asarray(gt_data[:, -1] + 0.5, dtype=np.int)
        gt_one_hot = np.zeros([len(gt_class_idx), num_classes])
        gt_one_hot[range(len(gt_one_hot)),
                   gt_class_idx] = 1  # one_hot classes including background

        gt_iou = np.array([iou(b, self.priors_norm) for b in gt_boxes]).T

        # assign gt to priors
        max_idxs = np.argmax(gt_iou, axis=1)
        max_val = gt_iou[np.arange(num_priors), max_idxs]
        prior_mask = max_val > overlap_threshold
        match_indices = max_idxs[prior_mask]

        self.match_indices = dict(
            zip(list(np.ix_(prior_mask)[0]), list(match_indices)))

        # prior labels
        confidence = np.zeros((num_priors, num_classes))
        confidence[:, 0] = 1
        confidence[prior_mask] = gt_one_hot[match_indices]

        gt_xy = (gt_boxes[:, 2:4] + gt_boxes[:, 0:2]) / 2.
        gt_wh = gt_boxes[:, 2:4] - gt_boxes[:, 0:2]
        gt_xy = gt_xy[match_indices]
        gt_wh = gt_wh[match_indices]
        gt_polygons = gt_polygons[match_indices]
        gt_rboxes = gt_rboxes[match_indices]

        priors_xy = self.priors_xy[prior_mask] / self.image_size
        priors_wh = self.priors_wh[prior_mask] / self.image_size
        variances_xy = self.priors_variances[prior_mask, 0:2]
        variances_wh = self.priors_variances[prior_mask, 2:4]

        # compute local offsets for
        offsets = np.zeros((num_priors, 4))
        offsets[prior_mask, 0:2] = (gt_xy - priors_xy) / priors_wh
        offsets[prior_mask, 2:4] = np.log(gt_wh / priors_wh)
        offsets[prior_mask, 0:2] /= variances_xy
        offsets[prior_mask, 2:4] /= variances_wh

        # compute local offsets for quadrilaterals
        offsets_quads = np.zeros((num_priors, 8))
        priors_xy_minmax = np.hstack(
            [priors_xy - priors_wh / 2, priors_xy + priors_wh / 2])
        # ref = np.tile(priors_xy, (1,4))
        ref = priors_xy_minmax[:, (0, 1, 2, 1, 2, 3, 0, 3)]  # corner points
        offsets_quads[prior_mask, :] = (gt_polygons - ref) / np.tile(
            priors_wh, (1, 4)) / np.tile(variances_xy, (1, 4))

        # compute local offsets for rotated bounding boxes
        offsets_rboxs = np.zeros((num_priors, 5))
        offsets_rboxs[prior_mask, 0:2] = (gt_rboxes[:, 0:2] -
                                          priors_xy) / priors_wh / variances_xy
        offsets_rboxs[prior_mask, 2:4] = (gt_rboxes[:, 2:4] -
                                          priors_xy) / priors_wh / variances_xy
        offsets_rboxs[prior_mask, 4] = np.log(
            gt_rboxes[:, 4] / priors_wh[:, 1]) / variances_wh[:, 1]

        return np.concatenate(
            [offsets, offsets_quads, offsets_rboxs, confidence], axis=1)
Ejemplo n.º 6
0
def test(net, dataset, num=float('inf')):
    '''
    Test on validation dataset
    :param net: net to evaluate
    :param mode: full image or cropped image
    :param Dataloader: data to evaluate
    :return:
    '''

    dtype = torch.cuda.FloatTensor
    dtype_t = torch.cuda.LongTensor

    dir_name = 'save_img/test/'
    if not os.path.exists(dir_name):
        os.makedirs(dir_name)

    selected_classes = [
        'person', 'car', 'truck', 'bicycle', 'motorcycle', 'rider', 'bus',
        'train'
    ]

    iou_score = {}
    nu = {}
    de = {}
    for cls in selected_classes:
        iou_score[cls] = 0.0
        nu[cls] = 0.0
        de[cls] = 0.0

    count = 0
    files = glob('img/{}/*/*.png'.format(dataset))
    for ind, file in enumerate(files):
        json_file = 'label' + file[3:-15] + 'gtFine_polygons.json'
        json_object = json.load(open(json_file))
        h = json_object['imgHeight']
        w = json_object['imgWidth']
        objects = json_object['objects']
        img = Image.open(file).convert('RGB')
        I = np.array(img)
        img_gt = Image.open(file).convert('RGB')
        for obj in objects:
            if obj['label'] in selected_classes:
                min_row, min_col, max_row, max_col = getbboxfromkps(
                    obj['polygon'], h, w)
                object_h = max_row - min_row
                object_w = max_col - min_col
                scale_h = 224.0 / object_h
                scale_w = 224.0 / object_w
                I_obj = I[min_row:max_row, min_col:max_col, :]
                I_obj_img = Image.fromarray(I_obj)
                I_obj_img = I_obj_img.resize((224, 224), Image.BILINEAR)
                I_obj_new = np.array(I_obj_img)
                xx = img2tensor(I_obj_new)
                xx = xx.unsqueeze(0).type(dtype)

                xx = Variable(xx)
                re = net.module.test(xx, 60)
                labels_p = re.cpu().numpy()[0]
                vertices1 = []
                vertices2 = []
                color = [np.random.randint(0, 255) for _ in range(3)]
                color += [100]
                color = tuple(color)
                for label in labels_p:
                    if (label == 784):
                        break
                    vertex = (((label % 28) * 8.0 + 4) / scale_w + min_col,
                              ((int(label / 28)) * 8.0 + 4) / scale_h +
                              min_row)
                    vertices1.append(vertex)

                try:
                    drw = ImageDraw.Draw(img, 'RGBA')
                    drw.polygon(vertices1, color)
                except TypeError:
                    continue

                for points in obj['polygon']:
                    vertex = (points[0], points[1])
                    vertices2.append(vertex)

                drw_gt = ImageDraw.Draw(img_gt, 'RGBA')
                drw_gt.polygon(vertices2, color)
                _, nu_this, de_this = iou(vertices1, vertices2, h, w)
                nu[obj['label']] += nu_this
                de[obj['label']] += de_this

        count += 1
        img.save(dir_name + str(ind) + '_pred.png', 'PNG')
        img_gt.save(dir_name + str(ind) + '_gt.png', 'PNG')
        if count >= num:
            break

    for cls in iou_score:
        iou_score[cls] = nu[cls] * 1.0 / de[cls] if de[cls] != 0 else 0
    return iou_score