Ejemplo n.º 1
0
 def test_generator(self, keep_data=False):
     B, W, H = self.flags.batch_size, self.flags.width, self.flags.height
     path = self.flags.input_path
     loaded = {}
     if "cv" not in self.flags.task:
         # test images to submit
         imgs = ["%s/%s" % (path, i) for i in os.listdir(path)]
     else:
         imgs = split(self.flags)[self.flags.fold]
     self.test_imgs = imgs
     xs, ns = [], []
     for img in imgs:
         if len(xs) == B:
             yield np.array(xs), ns
             del xs, ns
             xs, ns = [], []
         if img in loaded:
             x = loaded[img]
         else:
             x = np.array(Image.open(img).resize([W, H]))
             if keep_data:
                 loaded[img] = x
         xs.append(x)
         ns.append(img.split('/')[-1])
     if len(xs):
         yield np.array(xs), ns
Ejemplo n.º 2
0
 def va_generator(self, keep_data=True, first=False):
     fold = self.flags.fold
     dic = split(self.flags)
     imgs = dic[fold]
     del dic
     if first:
         print("Valid using fold {} images {}".format(fold, len(imgs)))
     return self._gen_random_batch(1, imgs, keep_data)
Ejemplo n.º 3
0
 def tr_generator(self, keep_data=True):
     fold = self.flags.fold
     epochs = self.flags.epochs
     dic = split(self.flags)
     imgs = sum([dic[i] for i in dic if i != fold], [])
     folds = [i for i in dic if i != fold]
     print("Train using folds {} images {}".format(folds, len(imgs)))
     del dic
     return self._gen_random_batch(epochs, imgs, keep_data)
Ejemplo n.º 4
0
    def analysis_timeout_order(self):
        print("===> analysis timeout order")
        item = self.by_xpath(
            '//*[@id="container"]/div/div[2]/div[2]/div/div[2]/div[2]/div[4]/div[2]/div[7]/div[2]'
        )
        item.click()
        try:
            orders = []
            time.sleep(5)
            curr_orders, count = [], 0
            while len(curr_orders) < 8 and count < 30:
                time.sleep(2)
                timeout_orders = self.by_xpath(
                    '/html/body/div[2]/div/div[2]/div[2]/div[2]/div/div[2]/table/tbody'
                )
                curr_orders = timeout_orders.text.split("\n")
                count += 1

            page_orders = split(curr_orders, 8)
            orders += page_orders
            next_button = self.by_xpath(
                '/html/body/div[2]/div/div[2]/div[2]/div[3]/div/button[2]')
            while next_button.is_enabled():
                next_button.click()
                curr_orders = [], 0
                while len(curr_orders) < 8 and count < 30:
                    time.sleep(2)
                    timeout_orders = self.by_xpath(
                        '/html/body/div[2]/div/div[2]/div[2]/div[2]/div/div[2]/table/tbody'
                    )
                    curr_orders = timeout_orders.text.split("\n")
                    count += 1

                page_odrers = split(curr_orders, 8)
                orders += page_orders
            larger_than_35 = len(
                [item for item in orders if item != '-' and int(item) >= 35])
        except:
            print("===> can't find such orders!")
            larger_than_35 = 0
        close_button = self.by_xpath_with_sleep(
            '/html/body/div[2]/div/div[2]/a/i', 1)
        close_button.click()
        return larger_than_35
Ejemplo n.º 5
0
 def parser(self, content: str):
     lines = [l.strip() for l in content.split('\n') if l.strip()]
     lines = [l for l in lines if not l.startswith(';')]
     section_list = utils.split(
         lines, lambda l: l.startswith('[') and l.endswith(']'))
     ini = INI()
     for s in section_list:
         self.parser_section(ini, s)
     logger.info(ini)
     return ini
Ejemplo n.º 6
0
 def write_cv_tfrecords(self):
     folds = self.flags.folds
     dic = split(self.flags)
     for i in range(folds):
         record_path = self.flags.record_path.replace(
             ".tfrecords", "_%d.tfrecords" % i)
         imgs = dic[i]
         labels = [
             img.replace(".jpg",
                         "_mask.gif").replace("train", "train_masks")
             for img in imgs
         ]
         self.write_tfrecord(imgs, labels, record_path)
Ejemplo n.º 7
0
def get_bboxes(img, gt_path):
    h, w = img.shape[0:2]
    # lines = read_lines(gt_path)
    bboxes = []
    tags = []
    with open(gt_path, encoding='utf-8', mode='r') as f:
        for line in f.readlines():
            line = remove_all(line, '\xef\xbb\xbf')
            gt = split(line, ',')
            if gt[-1][0] == '#':
                tags.append(False)
            else:
                tags.append(True)
            box = [int(gt[i]) for i in range(8)]
            box = np.asarray(box) / ([w * 1.0, h * 1.0] * 4)
            bboxes.append(box)

    return np.array(bboxes), tags
Ejemplo n.º 8
0
def get_bboxes(img, gt_path):
    h, w = img.shape[0:2]
    lines = read_lines(gt_path)
    bboxes = []
    tags = []
    for line in lines:
        line = remove_all(line, '\xef\xbb\xbf')
        gt = split(line, ',')

        x1 = np.int(gt[0])
        y1 = np.int(gt[1])

        bbox = [np.int(gt[i]) for i in range(4, 32)]
        bbox = np.asarray(bbox) + ([x1 * 1.0, y1 * 1.0] * 14)
        bbox = np.asarray(bbox) / ([w * 1.0, h * 1.0] * 14)

        bboxes.append(bbox)
        tags.append(True)
    return np.array(bboxes), tags
# For the supervised learning, I used two common technics on categorical data:
# * Counting: Which consist of creating new features by counting the frequences of unique values of each feature.
# * Target encoding: Which consist of encoding the data using the target variable.

# %%
df_count_encode = utils.count_encoding(df.copy())
df_targ_encoded = utils.target_encode(df_count_encode, target_2_classes)

# %%
df_targ_encoded.head()

# %% [markdown]
# ## Splitting the data into train and validation sets

# %%
x_train, x_val, y_train, y_val = utils.split(df_targ_encoded, target_2_classes)

# %%
models_common_params_GBM = dict(random_state=constants.RANDOM_STATE, verbose=0)

# %% [markdown]
# ## Defining models
# %% [markdown]
# We will be using 6 models:
# * LightGBM
# * XGBoost
# * CatBoost
# * 2 layers Neural Nets
# * Explainable Boosting Classifier
# * Hist Gradient Boosting Classifier
Ejemplo n.º 10
0
)

while True:

    option: str = input(f"{fore}Please select the option you want to use: ")

    while option not in ["1", "2", "3"]:
        delete_lines(1)
        option = input(f"{fore}Please select a correct option: ")

    if option == "1":

        text: str = input(
            f"{fore}\nPlease write something for the webhook to send: ")

        wb.send(content=split(text),
                username=data.username,
                avatar_url=data.avatar_url)

        print(f"\n{fore}Message sent successfully.")
        time.sleep(1)
        delete_lines(5)

    elif option == "2":

        title, description, image, thumbnail, footer = handle_embed_input()

        embed: Embed = Embed(
            title=split(title),
            description=split(description),
        )