Ejemplo n.º 1
0
    def model(self, states, u):
        """
        Extended bicycle model.
        Input: x - state vector (x, y, theta, velocity, steering angle)
               u - controls (acceleration, steering velocity)
               params - parameters (distance from front and back axis)
        Output: system - system states
        """
        a = u[0]  # velocity control
        w = u[1]

        # set contraints
        a = utils.constrain_value(a, self.min_acc, self.max_acc)
        w = utils.constrain_value(w, self.min_steering_vel,
                                  self.max_steering_vel)

        x = states[0, 0]
        y = states[1, 0]
        theta = states[2, 0]
        vel = states[3, 0]
        vel = utils.constrain_value(vel, self.min_vel, self.max_vel)
        phi = utils.constrain_value(states[4, 0], self.min_steering_angle,
                                    self.max_steering_angle)

        system = np.array([[vel * np.cos(theta)], [vel * np.sin(theta)],
                           [utils.truncate_angle(vel * np.tan(phi) / self.L)],
                           [a], [w]])

        return system
Ejemplo n.º 2
0
    def system_constraints(self, states, controls):
        states[2, 0] = utils.truncate_angle(
            states[2, 0])  # orientation from -pi to pi

        controls[0] = utils.constrain_value(controls[0], self.min_vel,
                                            self.max_vel)  # constrain velocity
        return states, controls
Ejemplo n.º 3
0
    def model(self, states, u):
        """
        Differential Drive model.
        Input: x - state vector (x, y, theta)
               u - controls (speed, steering_angle)
               params - parameters (wheel radius)
        Output: system - system states
        """

        v = u[0]
        w = u[1]

        # set contraints
        v = utils.constrain_value(v, self.min_vel, self.max_vel)

        x = states[0, 0]
        y = states[1, 0]
        theta = states[2, 0]
        phi = states[3, 0]

        system = np.array([[self.r * v * np.cos(theta)],
                           [self.r * v * np.sin(theta)],
                           [utils.truncate_angle(self.r * phi / self.L)], [w]])

        return system
Ejemplo n.º 4
0
    def model(self, states, u):
        """
        Simple bicycle/car nonlinear system.
        Input: x - state vector (x, y, theta)
               u - controls (speed, steering_angle)
        Output: system - system states
        """

        v = u[0]  # velocity control
        df = math.atan(u[1] * self.L /
                       v)  # transformation of steering angle to robots heading

        # set contraints
        vel = utils.constrain_value(v, self.min_vel, self.max_vel)
        df = utils.constrain_value(df, self.min_steering_angle,
                                   self.max_steering_angle)
        # states
        x = states[0, 0]
        y = states[1, 0]
        theta = states[2, 0]
        # update
        system = np.array([[vel * np.cos(theta)], [vel * np.sin(theta)],
                           [utils.truncate_angle(vel * np.tan(df) / self.L)]])

        return system
Ejemplo n.º 5
0
    def system_constraints(self, states, controls):
        states[2, 0] = utils.truncate_angle(
            states[2, 0])  # orientation from -pi to pi
        states[3, 0] = utils.constrain_value(states[3, 0], self.min_vel,
                                             self.max_vel)
        states[4, 0] = utils.constrain_value(
            states[4, 0], self.min_steering_angle,
            self.max_steering_angle)  # orientation from -pi to pi

        controls[0] = utils.constrain_value(controls[0], self.min_acc,
                                            self.max_acc)  # constrain acc
        controls[1] = utils.constrain_value(
            controls[1], self.min_steering_vel,
            self.max_steering_vel)  # constrain acc

        return states, controls
Ejemplo n.º 6
0
    def lqr_vel_steer_control(self, robot):
        #        robot.lookahead_idx = 25
        self.Q = np.eye(5)
        self.R = np.eye(2)
        robot.goal = self.look_ahead(robot)

        ######## Linearization ########
        A, B = robot.jacobi()

        ######## DARE ########
        X = self.solve_DARE(A, B)

        ######## LQR solution ########
        lqr_k = self.solve_lqr(X, A, B)

        error = robot.error()

        ustar = -lqr_k @ error
        # calc steering input
        delta = utils.truncate_angle(ustar[1])
        delta = (delta - robot.states[4, 0]) / robot.dT
        return np.array([ustar[0], delta])
Ejemplo n.º 7
0
    def lqr_steer_control(self, robot):
        self.Q = np.eye(robot.states.shape[0])
        self.R = np.eye(2)
        robot.goal = self.look_ahead(robot)

        ######## Linearization ########
        vel = utils.euclidean_distance(robot.states, robot.goal)
        A, B = robot.jacobi()

        ######## DARE ########
        X = self.solve_DARE(A, B)

        ######## LQR solution ########
        lqr_k = self.solve_lqr(X, A, B)

        error = robot.error()

        ustar = -lqr_k @ error
        # calc steering input
        delta = utils.truncate_angle(ustar[1])

        return np.array([vel, delta])