Ejemplo n.º 1
0
                "epoch_times": epoch_times,
                "total_epoch_times": total_epoch_times
            }, open(results_path, "wb"))

        total_epoch_time = time.time() - start_epoch
        total_epoch_times.append(total_epoch_time)

        logger.info('epoch: {} took {:.2f}s'.format(epoch, total_epoch_time))
        logger.info('Epoch mean loss: {}'.format(np.mean(m_loss)))
        logger.info('val auc: {}, new node val auc: {}'.format(
            val_auc, nn_val_auc))
        logger.info('val ap: {}, new node val ap: {}'.format(
            val_ap, nn_val_ap))

        # Early stopping
        if early_stopper.early_stop_check(val_ap):
            logger.info('No improvement over {} epochs, stop training'.format(
                early_stopper.max_round))
            logger.info(
                f'Loading the best model at epoch {early_stopper.best_epoch}')
            best_model_path = get_checkpoint_path(early_stopper.best_epoch)
            dgnn.load_state_dict(torch.load(best_model_path))
            logger.info(
                f'Loaded the best model at epoch {early_stopper.best_epoch} for inference'
            )
            dgnn.eval()
            break
        else:
            torch.save(dgnn.state_dict(), get_checkpoint_path(epoch))

    # Training has finished, we have loaded the best model, and we want to backup its current
Ejemplo n.º 2
0
        with open(results_path, "wb") as f:
            pickle.dump(
                {
                    "val_losses": val_losses,
                    "train_losses": train_losses,
                    "epoch_times": [0.0],
                    "new_nodes_val_aps": [],
                }, f)

        logger.info(
            f'Epoch {epoch}: train loss: {loss / num_batch}, val loss: {val_loss}, time: {time.time() - start_epoch}'
        )

    if args.use_validation:
        if early_stopper.early_stop_check(val_loss):
            logger.info('No improvement over {} epochs, stop training'.format(
                early_stopper.max_round))
            break
        else:
            torch.save(decoder.state_dict(), get_checkpoint_path(epoch))

    if args.use_validation:
        logger.info(
            f'Loading the best model at epoch {early_stopper.best_epoch}')
        best_model_path = get_checkpoint_path(early_stopper.best_epoch)
        decoder.load_state_dict(torch.load(best_model_path))
        logger.info(
            f'Loaded the best model at epoch {early_stopper.best_epoch} for inference'
        )
        decoder.eval()
Ejemplo n.º 3
0
        val_rmses.append(val_rmse)

        pickle.dump(
            {
                "val_rmse": val_rmse,
                "train_losses": train_losses,
                "epoch_times": [0.0],
                "new_nodes_val_aps": [],
            }, open(results_path, "wb"))

        logger.info(
            f'Epoch {epoch}: train loss: {loss / num_batch}, val rmse: {val_rmse},'
            f' time: {time.time() - start_epoch}')

        if args.use_validation:
            if early_stopper.early_stop_check(-val_rmse):
                logger.info(
                    'No improvement over {} epochs, stop training'.format(
                        early_stopper.max_round))
                break
            else:
                torch.save(net.state_dict(), get_checkpoint_path(epoch))

    if args.use_validation:
        logger.info(
            f'Loading the best model at epoch {early_stopper.best_epoch}')
        best_model_path = get_checkpoint_path(early_stopper.best_epoch)
        net.load_state_dict(torch.load(best_model_path))
        logger.info(
            f'Loaded the best model at epoch {early_stopper.best_epoch} for inference'
        )
Ejemplo n.º 4
0
    }, open(results_path, "wb"))

    total_epoch_time = time.time() - start_epoch
    total_epoch_times.append(total_epoch_time)

    logger.info('epoch: {} took {:.2f}s'.format(epoch, total_epoch_time))
    logger.info('Epoch mean loss: {}'.format(np.mean(m_loss)))
    logger.info(
      'val mrr: {}, new node val mrr: {}'.format(val_mrr, nn_val_mrr))
    logger.info(
      'val recall 20: {}, new node val recall 20: {}'.format(val_recall_20, nn_val_recall_20))
    logger.info(
      'val recall 50: {}, new node val recall 50: {}'.format(val_recall_50, nn_val_recall_50))

    # Early stopping
    if early_stopper.early_stop_check(val_mrr):
      logger.info('No improvement over {} epochs, stop training'.format(early_stopper.max_round))
      logger.info(f'Loading the best model at epoch {early_stopper.best_epoch}')
      best_model_path = get_checkpoint_path(early_stopper.best_epoch)
      dgnn.load_state_dict(torch.load(best_model_path))
      logger.info(f'Loaded the best model at epoch {early_stopper.best_epoch} for inference')
      dgnn.eval()
      break
    else:
      torch.save(dgnn.state_dict(), get_checkpoint_path(epoch))

  # Training has finished, we have loaded the best model, and we want to backup its current
  # memory (which has seen validation edges) so that it can also be used when testing on unseen
  # nodes
    val_memory_backup_s = dgnn.memory_s.backup_memory()
    val_memory_backup_g = dgnn.memory_g.backup_memory()