Ejemplo n.º 1
0
#Creating the Networks and Methods of the Run.
gpu_options = tf.GPUOptions(
    per_process_gpu_memory_fraction=settings["GPUCapacitty"],
    allow_growth=True)
config = tf.ConfigProto(gpu_options=gpu_options,
                        log_device_placement=False,
                        allow_soft_placement=True)
sess = tf.Session(config=config)

with tf.device(args.processor):
    Method = GetFunction(settings["Method"])
    workers = Method(sess=sess,
                     settings=settings,
                     netConfigOverride=netConfigOverride)

InitializeVariables(
    sess)  #Included to catch if there are any uninitalized variables.

#Saving config files in the model directory
EXP_NAME = settings["RunName"]
LOG_PATH = './logs/' + EXP_NAME
CreatePath(LOG_PATH)
with open(LOG_PATH + '/runSettings.json', 'w') as outfile:
    json.dump(settings, outfile)
with open(LOG_PATH + '/netConfigOverride.json', 'w') as outfile:
    json.dump(netConfigOverride, outfile)

COORD = tf.train.Coordinator()
worker_threads = []
for i, worker in enumerate(workers):
    if i == 0:
        job = lambda: worker.work(COORD, render=args.render)
Ejemplo n.º 2
0
Archivo: Test.py Proyecto: zd6/RL
import tensorflow as tf
import numpy as np
from utils.utils import InitializeVariables, CreatePath, interval_flag, GetFunction


if __name__ == "__main__":
    import numpy as np
    gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5, allow_growth=True)
    config = tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False, allow_soft_placement=True)
    sess = tf.Session(config=config)
    with tf.device("/gpu:0"):
        test = HierarchicalNetwork(configFile="networks/hierarchyTest.json",actionSize=4)
        # s = tf.placeholder(tf.float32, [None,39,39,6], 'S')
        # state={"state":s}
        # out = test(state)
        HPs = { "eps":0.2,
                "EntropyBeta":0.00,
                "CriticBeta":0.3,
                "LR":0.0001,
                "Gamma":0.99,
                "lambda":0.9,
                "Optimizer":"Adam",
                "Epochs":5,
                "BatchSize":1024,
                "FS":2,
                "MinibatchSize":32}
        test2 = PPO_Hierarchy(test,sess,[10,10,3],4,HPs)
    InitializeVariables(sess)
    s = np.random.rand(10,10,10,3)
    a,stuff=test2.GetAction(s,0)