Ejemplo n.º 1
0
    def predict(self, image, description):

        self.args.description = description
        self.args.image_path = image

        inverter = StyleGANInverter(
            self.args.model_name,
            mode=self.args.mode,
            learning_rate=self.args.learning_rate,
            iteration=self.args.num_iterations,
            reconstruction_loss_weight=1.0,
            perceptual_loss_weight=self.args.loss_weight_feat,
            regularization_loss_weight=self.args.loss_weight_enc,
            clip_loss_weight=self.args.loss_weight_clip,
            description=self.args.description,
            logger=None,
        )
        image_size = inverter.G.resolution

        # Invert the given image.
        image = resize_image(
            load_image(str(self.args.image_path)), (image_size, image_size)
        )
        _, viz_results = inverter.easy_invert(image, num_viz=self.args.num_results)

        out_path = Path(tempfile.mkdtemp()) / "out.png"
        save_image(str(out_path), viz_results[-1])
        return out_path
Ejemplo n.º 2
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.isfile(args.image_path)
    output_dir = args.output_dir or f'results/inversion/test'
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    inverter = StyleGANInverter(
        args.model_name,
        mode=args.mode,
        learning_rate=args.learning_rate,
        iteration=args.num_iterations,
        reconstruction_loss_weight=1.0,
        perceptual_loss_weight=args.loss_weight_feat,
        regularization_loss_weight=args.loss_weight_enc,
        clip_loss_weight=args.loss_weight_clip,
        description=args.description,
        logger=None)
    image_size = inverter.G.resolution

    # Invert the given image.
    image = resize_image(load_image(args.image_path), (image_size, image_size))
    _, viz_results = inverter.easy_invert(image, num_viz=args.num_results)

    if args.mode == 'man':
        image_name = os.path.splitext(os.path.basename(args.image_path))[0]
    else:
        image_name = 'gen'
    save_image(f'{output_dir}/{image_name}_enc.png', viz_results[1])
    save_image(f'{output_dir}/{image_name}_inv.png', viz_results[-1])
    print(f'save {image_name} in {output_dir}')
def main():
  """Main function."""
  args = parse_args()
  os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
  assert os.path.exists(args.image_list)
  image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
  output_dir = args.output_dir or f'results/inversion/{image_list_name}'
  logger = setup_logger(output_dir, 'inversion.log', 'inversion_logger')

  logger.info(f'Loading model.')
  inverter = StyleGANInverter(
      args.model_name,
      learning_rate=args.learning_rate,
      iteration=args.num_iterations,
      reconstruction_loss_weight=1.0,
      perceptual_loss_weight=args.loss_weight_feat,
      regularization_loss_weight=args.loss_weight_enc,
      logger=logger)
  image_size = inverter.G.resolution

  # Load image list.
  logger.info(f'Loading image list.')
  image_list = []
  with open(args.image_list, 'r') as f:
    for line in f:
      image_list.append(line.strip())

  # Initialize visualizer.
  save_interval = args.num_iterations // args.num_results
  headers = ['Name', 'Original Image', 'Encoder Output']
  for step in range(1, args.num_iterations + 1):
    if step == args.num_iterations or step % save_interval == 0:
      headers.append(f'Step {step:06d}')
  viz_size = None if args.viz_size == 0 else args.viz_size
  visualizer = HtmlPageVisualizer(
      num_rows=len(image_list), num_cols=len(headers), viz_size=viz_size)
  visualizer.set_headers(headers)

  # Invert images.
  logger.info(f'Start inversion.')
  latent_codes = []
  for img_idx in tqdm(range(len(image_list)), leave=False):
    image_path = image_list[img_idx]
    image_name = os.path.splitext(os.path.basename(image_path))[0]
    image = resize_image(load_image(image_path), (image_size, image_size))
    code, viz_results = inverter.easy_invert(image, num_viz=args.num_results)
    latent_codes.append(code)
    save_image(f'{output_dir}/{image_name}_ori.png', image)
    save_image(f'{output_dir}/{image_name}_enc.png', viz_results[1])
    save_image(f'{output_dir}/{image_name}_inv.png', viz_results[-1])
    visualizer.set_cell(img_idx, 0, text=image_name)
    visualizer.set_cell(img_idx, 1, image=image)
    for viz_idx, viz_img in enumerate(viz_results[1:]):
      visualizer.set_cell(img_idx, viz_idx + 2, image=viz_img)

  # Save results.
  os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
  np.save(f'{output_dir}/inverted_codes.npy',
          np.concatenate(latent_codes, axis=0))
  visualizer.save(f'{output_dir}/inversion.html')
Ejemplo n.º 4
0
def load_test_images(dir, image_size = 128):
    img_paths = get_test_images_paths(dir)
    imgs = []

    for i, image_path in enumerate(img_paths):
        IMG = resize_image(load_image(image_path), (image_size, image_size))
        imgs.append(IMG)

    return imgs
Ejemplo n.º 5
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    src_dir = args.src_dir
    src_dir_name = os.path.basename(src_dir.rstrip('/'))
    assert os.path.exists(src_dir)
    assert os.path.exists(f'{src_dir}/image_list.txt')
    assert os.path.exists(f'{src_dir}/inverted_codes.npy')
    dst_dir = args.dst_dir
    dst_dir_name = os.path.basename(dst_dir.rstrip('/'))
    assert os.path.exists(dst_dir)
    assert os.path.exists(f'{dst_dir}/image_list.txt')
    assert os.path.exists(f'{dst_dir}/inverted_codes.npy')
    output_dir = args.output_dir or 'results/interpolation'
    job_name = f'{src_dir_name}_TO_{dst_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        _, _, _, Gs = pickle.load(f)

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
    wp = tf.placeholder(tf.float32, [args.batch_size, num_layers, latent_dim],
                        name='latent_code')
    x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)

    # Load image and codes.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    src_list = []
    with open(f'{src_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{src_dir}/{name}_ori.png')
            src_list.append(name)
    src_codes = np.load(f'{src_dir}/inverted_codes.npy')
    assert src_codes.shape[0] == len(src_list)
    num_src = src_codes.shape[0]
    dst_list = []
    with open(f'{dst_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{dst_dir}/{name}_ori.png')
            dst_list.append(name)
    dst_codes = np.load(f'{dst_dir}/inverted_codes.npy')
    assert dst_codes.shape[0] == len(dst_list)
    num_dst = dst_codes.shape[0]

    # Interpolate images.
    logger.info(f'Start interpolation.')
    step = args.step + 2
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_src * num_dst,
                                    num_cols=step + 2,
                                    viz_size=viz_size)
    visualizer.set_headers(['Source', 'Source Inversion'] +
                           [f'Step {i:02d}' for i in range(1, step - 1)] +
                           ['Target Inversion', 'Target'])

    inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
    for src_idx in tqdm(range(num_src), leave=False):
        src_code = src_codes[src_idx:src_idx + 1]
        src_path = f'{src_dir}/{src_list[src_idx]}_ori.png'
        codes = interpolate(src_codes=np.repeat(src_code, num_dst, axis=0),
                            dst_codes=dst_codes,
                            step=step)
        for dst_idx in tqdm(range(num_dst), leave=False):
            dst_path = f'{dst_dir}/{dst_list[dst_idx]}_ori.png'
            output_images = []
            for idx in range(0, step, args.batch_size):
                batch = codes[dst_idx, idx:idx + args.batch_size]
                inputs[0:len(batch)] = batch
                images = sess.run(x, feed_dict={wp: inputs})
                output_images.append(images[0:len(batch)])
            output_images = adjust_pixel_range(
                np.concatenate(output_images, axis=0))

            row_idx = src_idx * num_dst + dst_idx
            visualizer.set_cell(row_idx, 0, image=load_image(src_path))
            visualizer.set_cell(row_idx, step + 1, image=load_image(dst_path))
            for s, output_image in enumerate(output_images):
                if s == 5 and row_idx == 2:
                    save_image(f'./results/interpolation/005_int.png',
                               output_image)
                visualizer.set_cell(row_idx, s + 1, image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 6
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    image_dir = args.image_dir
    image_dir_name = os.path.basename(image_dir.rstrip('/'))
    assert os.path.exists(image_dir)
    assert os.path.exists(f'{image_dir}/image_list.txt')
    assert os.path.exists(f'{image_dir}/inverted_codes.npy')
    boundary_path = args.boundary_path
    assert os.path.exists(boundary_path)
    boundary_name = os.path.splitext(os.path.basename(boundary_path))[0]
    output_dir = args.output_dir or 'results/manipulation'
    job_name = f'{boundary_name.upper()}_{image_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    generator = build_generator(args.model_name)

    # Load image, codes, and boundary.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    image_list = []
    with open(f'{image_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{image_dir}/{name}_ori.png')
            assert os.path.exists(f'{image_dir}/{name}_inv.png')
            image_list.append(name)
    latent_codes = np.load(f'{image_dir}/inverted_codes.npy')
    assert latent_codes.shape[0] == len(image_list)
    num_images = latent_codes.shape[0]
    logger.info(f'Loading boundary.')
    boundary_file = np.load(boundary_path, allow_pickle=True)[()]
    if isinstance(boundary_file, dict):
        boundary = boundary_file['boundary']
        manipulate_layers = boundary_file['meta_data']['manipulate_layers']
    else:
        boundary = boundary_file
        manipulate_layers = args.manipulate_layers
    if manipulate_layers:
        logger.info(f'  Manipulating on layers `{manipulate_layers}`.')
    else:
        logger.info(f'  Manipulating on ALL layers.')

    # Manipulate images.
    logger.info(f'Start manipulation.')
    step = args.step
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_images,
                                    num_cols=step + 3,
                                    viz_size=viz_size)
    visualizer.set_headers(['Name', 'Origin', 'Inverted'] +
                           [f'Step {i:02d}' for i in range(1, step + 1)])
    for img_idx, img_name in enumerate(image_list):
        ori_image = load_image(f'{image_dir}/{img_name}_ori.png')
        inv_image = load_image(f'{image_dir}/{img_name}_inv.png')
        visualizer.set_cell(img_idx, 0, text=img_name)
        visualizer.set_cell(img_idx, 1, image=ori_image)
        visualizer.set_cell(img_idx, 2, image=inv_image)

    codes = manipulate(latent_codes=latent_codes,
                       boundary=boundary,
                       start_distance=args.start_distance,
                       end_distance=args.end_distance,
                       step=step,
                       layerwise_manipulation=True,
                       num_layers=generator.num_layers,
                       manipulate_layers=manipulate_layers,
                       is_code_layerwise=True,
                       is_boundary_layerwise=True)

    for img_idx in tqdm(range(num_images), leave=False):
        output_images = generator.easy_synthesize(
            codes[img_idx], latent_space_type='wp')['image']
        for s, output_image in enumerate(output_images):
            visualizer.set_cell(img_idx, s + 3, image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 7
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.target_list)
    target_list_name = os.path.splitext(os.path.basename(args.target_list))[0]
    assert os.path.exists(args.context_list)
    context_list_name = os.path.splitext(os.path.basename(
        args.context_list))[0]
    output_dir = args.output_dir or f'results/diffusion'
    job_name = f'{target_list_name}_TO_{context_list_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]
    crop_size = args.crop_size
    crop_x = args.center_x - crop_size // 2
    crop_y = args.center_y - crop_size // 2
    mask = np.zeros((1, image_size, image_size, 3), dtype=np.float32)
    mask[:, crop_y:crop_y + crop_size, crop_x:crop_x + crop_size, :] = 1.0

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_mask = (tf.transpose(x, [0, 2, 3, 1]) + 1) * mask - 1
    x_mask_255 = (x_mask + 1) / 2 * 255
    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = args.batch_size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_mask = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) * mask - 1
    x_rec_mask_255 = (x_rec_mask + 1) / 2 * 255

    w_enc = E.get_output_for(x, phase=False)
    wp_enc = tf.reshape(w_enc, latent_shape)
    setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    logger.info(f'Setting configuration for optimization.')
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_mask_255)
    x_rec_feat = perceptual_model(x_rec_mask_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x_mask - x_rec_mask), axis=[1, 2, 3])

    loss = loss_pix + args.loss_weight_feat * loss_feat
    optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Load image list.
    logger.info(f'Loading target images and context images.')
    target_list = []
    with open(args.target_list, 'r') as f:
        for line in f:
            target_list.append(line.strip())
    num_targets = len(target_list)
    context_list = []
    with open(args.context_list, 'r') as f:
        for line in f:
            context_list.append(line.strip())
    num_contexts = len(context_list)
    num_pairs = num_targets * num_contexts

    # Invert images.
    logger.info(f'Start diffusion.')
    save_interval = args.num_iterations // args.num_results
    headers = [
        'Target Image', 'Context Image', 'Stitched Image', 'Encoder Output'
    ]
    for step in range(1, args.num_iterations + 1):
        if step == args.num_iterations or step % save_interval == 0:
            headers.append(f'Step {step:06d}')
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_pairs,
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    latent_codes_enc = []
    latent_codes = []
    for target_idx in tqdm(range(num_targets), desc='Target ID', leave=False):
        # Load target.
        target_image = resize_image(load_image(target_list[target_idx]),
                                    (image_size, image_size))
        visualizer.set_cell(target_idx * num_contexts, 0, image=target_image)
        for context_idx in tqdm(range(0, num_contexts, args.batch_size),
                                desc='Context ID',
                                leave=False):
            row_idx = target_idx * num_contexts + context_idx
            batch = context_list[context_idx:context_idx + args.batch_size]
            for i, context_image_path in enumerate(batch):
                context_image = resize_image(load_image(context_image_path),
                                             (image_size, image_size))
                visualizer.set_cell(row_idx + i, 1, image=context_image)
                context_image[crop_y:crop_y + crop_size, crop_x:crop_x +
                              crop_size] = (target_image[crop_y:crop_y +
                                                         crop_size,
                                                         crop_x:crop_x +
                                                         crop_size])
                visualizer.set_cell(row_idx + i, 2, image=context_image)
                images[i] = np.transpose(context_image, [2, 0, 1])
            inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
            # Run encoder.
            sess.run([setter], {x: inputs})
            outputs = sess.run([wp, x_rec])
            latent_codes_enc.append(outputs[0][0:len(batch)])
            outputs[1] = adjust_pixel_range(outputs[1])
            for i, _ in enumerate(batch):
                visualizer.set_cell(row_idx + i, 3, image=outputs[1][i])
            # Optimize latent codes.
            col_idx = 4
            for step in tqdm(range(1, args.num_iterations + 1), leave=False):
                sess.run(train_op, {x: inputs})
                if step == args.num_iterations or step % save_interval == 0:
                    outputs = sess.run([wp, x_rec])
                    outputs[1] = adjust_pixel_range(outputs[1])
                    for i, _ in enumerate(batch):
                        visualizer.set_cell(row_idx + i,
                                            col_idx,
                                            image=outputs[1][i])
                    col_idx += 1
            latent_codes.append(outputs[0][0:len(batch)])

    # Save results.
    code_shape = [num_targets, num_contexts] + list(latent_shape[1:])
    np.save(f'{output_dir}/{job_name}_encoded_codes.npy',
            np.concatenate(latent_codes_enc, axis=0).reshape(code_shape))
    np.save(f'{output_dir}/{job_name}_inverted_codes.npy',
            np.concatenate(latent_codes, axis=0).reshape(code_shape))
    visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 8
0
    def synthesize(self,
                   num,
                   z=None,
                   html_name=None,
                   save_raw_synthesis=False):
        """Synthesizes images.

        Args:
            num: Number of images to synthesize.
            z: Latent codes used for generation. If not specified, this function
                will sample latent codes randomly. (default: None)
            html_name: Name of the output html page for visualization. If not
                specified, no visualization page will be saved. (default: None)
            save_raw_synthesis: Whether to save raw synthesis on the disk.
                (default: False)
        """
        if not html_name and not save_raw_synthesis:
            return

        self.set_mode('val')

        temp_dir = os.path.join(self.work_dir, 'synthesize_results')
        os.makedirs(temp_dir, exist_ok=True)

        if z is not None:
            assert isinstance(z, np.ndarray)
            assert z.ndim == 2 and z.shape[1] == self.z_space_dim
            num = min(num, z.shape[0])
            z = torch.from_numpy(z).type(torch.FloatTensor)
        if not num:
            return
        # TODO: Use same z during the entire training process.

        self.logger.init_pbar()
        task1 = self.logger.add_pbar_task('Synthesize', total=num)

        indices = list(range(self.rank, num, self.world_size))
        for batch_idx in range(0, len(indices), self.val_batch_size):
            sub_indices = indices[batch_idx:batch_idx + self.val_batch_size]
            batch_size = len(sub_indices)
            if z is None:
                code = torch.randn(batch_size, self.z_space_dim).cuda()
            else:
                code = z[sub_indices].cuda()
            with torch.no_grad():
                if 'generator_smooth' in self.models:
                    G = self.models['generator_smooth']
                else:
                    G = self.models['generator']
                images = G(code, **self.G_kwargs_val)['image']
                images = self.postprocess(images)
            for sub_idx, image in zip(sub_indices, images):
                save_image(os.path.join(temp_dir, f'{sub_idx:06d}.jpg'), image)
            self.logger.update_pbar(task1, batch_size * self.world_size)

        dist.barrier()
        if self.rank != 0:
            return

        if html_name:
            task2 = self.logger.add_pbar_task('Visualize', total=num)
            html = HtmlPageVisualizer(grid_size=num)
            for image_idx in range(num):
                image = load_image(
                    os.path.join(temp_dir, f'{image_idx:06d}.jpg'))
                row_idx, col_idx = divmod(image_idx, html.num_cols)
                html.set_cell(row_idx,
                              col_idx,
                              image=image,
                              text=f'Sample {image_idx:06d}')
                self.logger.update_pbar(task2, 1)
            html.save(os.path.join(self.work_dir, html_name))
        if not save_raw_synthesis:
            shutil.rmtree(temp_dir)

        self.logger.close_pbar()
Ejemplo n.º 9
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    image_dir = args.image_dir
    image_dir_name = os.path.basename(image_dir.rstrip('/'))
    assert os.path.exists(image_dir)
    assert os.path.exists(f'{image_dir}/image_list.txt')
    assert os.path.exists(f'{image_dir}/inverted_codes.npy')
    boundary_path = args.boundary_path
    assert os.path.exists(boundary_path)
    boundary_name = os.path.splitext(os.path.basename(boundary_path))[0]
    output_dir = args.output_dir or 'results/manipulation'
    job_name = f'{boundary_name.upper()}_{image_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        _, _, _, Gs = pickle.load(f)

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
    wp = tf.placeholder(tf.float32, [args.batch_size, num_layers, latent_dim],
                        name='latent_code')
    x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)

    # Load image, codes, and boundary.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    image_list = []
    with open(f'{image_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{image_dir}/{name}_ori.png')
            assert os.path.exists(f'{image_dir}/{name}_inv.png')
            image_list.append(name)
    latent_codes = np.load(f'{image_dir}/inverted_codes.npy')
    assert latent_codes.shape[0] == len(image_list)
    num_images = latent_codes.shape[0]
    logger.info(f'Loading boundary.')
    boundary_file = np.load(boundary_path, allow_pickle=True)[()]
    if isinstance(boundary_file, dict):
        boundary = boundary_file['boundary']
        manipulate_layers = boundary_file['meta_data']['manipulate_layers']
    else:
        boundary = boundary_file
        manipulate_layers = args.manipulate_layers
    if manipulate_layers:
        logger.info(f'  Manipulating on layers `{manipulate_layers}`.')
    else:
        logger.info(f'  Manipulating on ALL layers.')

    # Manipulate images.
    logger.info(f'Start manipulation.')
    step = args.step
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_images,
                                    num_cols=step + 3,
                                    viz_size=viz_size)
    visualizer.set_headers(['Name', 'Origin', 'Inverted'] +
                           [f'Step {i:02d}' for i in range(1, step + 1)])
    for img_idx, img_name in enumerate(image_list):
        ori_image = load_image(f'{image_dir}/{img_name}_ori.png')
        inv_image = load_image(f'{image_dir}/{img_name}_inv.png')
        visualizer.set_cell(img_idx, 0, text=img_name)
        visualizer.set_cell(img_idx, 1, image=ori_image)
        visualizer.set_cell(img_idx, 2, image=inv_image)

    codes = manipulate(latent_codes=latent_codes,
                       boundary=boundary,
                       start_distance=args.start_distance,
                       end_distance=args.end_distance,
                       step=step,
                       layerwise_manipulation=True,
                       num_layers=num_layers,
                       manipulate_layers=manipulate_layers,
                       is_code_layerwise=True,
                       is_boundary_layerwise=True)
    inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
    for img_idx in tqdm(range(num_images), leave=False):
        output_images = []
        for idx in range(0, step, args.batch_size):
            batch = codes[img_idx, idx:idx + args.batch_size]
            inputs[0:len(batch)] = batch
            images = sess.run(x, feed_dict={wp: inputs})
            output_images.append(images[0:len(batch)])
        output_images = adjust_pixel_range(
            np.concatenate(output_images, axis=0))
        for s, output_image in enumerate(output_images):
            visualizer.set_cell(img_idx, s + 3, image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    style_dir = args.style_dir
    style_dir_name = os.path.basename(style_dir.rstrip('/'))
    assert os.path.exists(style_dir)
    assert os.path.exists(f'{style_dir}/image_list.txt')
    assert os.path.exists(f'{style_dir}/inverted_codes.npy')
    content_dir = args.content_dir
    content_dir_name = os.path.basename(content_dir.rstrip('/'))
    assert os.path.exists(content_dir)
    assert os.path.exists(f'{content_dir}/image_list.txt')
    assert os.path.exists(f'{content_dir}/inverted_codes.npy')
    output_dir = args.output_dir or 'results/style_mixing'
    job_name = f'{style_dir_name}_STYLIZE_{content_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    generator = build_generator(args.model_name)
    mix_layers = list(range(args.mix_layer_start_idx, generator.num_layers))

    # Load image and codes.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    style_list = []
    with open(f'{style_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{style_dir}/{name}_ori.png')
            style_list.append(name)
    logger.info(f'Loading inverted latent codes.')
    style_codes = np.load(f'{style_dir}/inverted_codes.npy')
    assert style_codes.shape[0] == len(style_list)
    num_styles = style_codes.shape[0]
    content_list = []
    with open(f'{content_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{content_dir}/{name}_ori.png')
            content_list.append(name)
    logger.info(f'Loading inverted latent codes.')
    content_codes = np.load(f'{content_dir}/inverted_codes.npy')
    assert content_codes.shape[0] == len(content_list)
    num_contents = content_codes.shape[0]

    # Mix styles.
    logger.info(f'Start style mixing.')
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_styles + 1,
                                    num_cols=num_contents + 1,
                                    viz_size=viz_size)
    visualizer.set_headers(['Style'] +
                           [f'Content {i:03d}' for i in range(num_contents)])
    for style_idx, style_name in enumerate(style_list):
        style_image = load_image(f'{style_dir}/{style_name}_ori.png')
        visualizer.set_cell(style_idx + 1, 0, image=style_image)
    for content_idx, content_name in enumerate(content_list):
        content_image = load_image(f'{content_dir}/{content_name}_ori.png')
        visualizer.set_cell(0, content_idx + 1, image=content_image)

    codes = mix_style(style_codes=style_codes,
                      content_codes=content_codes,
                      num_layers=generator.num_layers,
                      mix_layers=mix_layers)
    for style_idx in tqdm(range(num_styles), leave=False):
        output_images = generator.easy_synthesize(
            codes[style_idx], latent_space_type='wp')['image']
        for content_idx, output_image in enumerate(output_images):
            visualizer.set_cell(style_idx + 1,
                                content_idx + 1,
                                image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
def main():
  """Main function."""
  args = parse_args()
  os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
  assert os.path.exists(args.target_list)
  target_list_name = os.path.splitext(os.path.basename(args.target_list))[0]
  assert os.path.exists(args.context_list)
  context_list_name = os.path.splitext(os.path.basename(args.context_list))[0]
  output_dir = args.output_dir or f'results/diffusion'
  job_name = f'{target_list_name}_TO_{context_list_name}'
  logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

  logger.info(f'Loading model.')
  inverter = StyleGANInverter(
      args.model_name,
      learning_rate=args.learning_rate,
      iteration=args.num_iterations,
      reconstruction_loss_weight=1.0,
      perceptual_loss_weight=args.loss_weight_feat,
      regularization_loss_weight=0.0,
      logger=logger)
  image_size = inverter.G.resolution

  # Load image list.
  logger.info(f'Loading target images and context images.')
  target_list = []
  with open(args.target_list, 'r') as f:
    for line in f:
      target_list.append(line.strip())
  num_targets = len(target_list)
  context_list = []
  with open(args.context_list, 'r') as f:
    for line in f:
      context_list.append(line.strip())
  num_contexts = len(context_list)
  num_pairs = num_targets * num_contexts

  # Initialize visualizer.
  save_interval = args.num_iterations // args.num_results
  headers = ['Target Image', 'Context Image', 'Stitched Image',
             'Encoder Output']
  for step in range(1, args.num_iterations + 1):
    if step == args.num_iterations or step % save_interval == 0:
      headers.append(f'Step {step:06d}')
  viz_size = None if args.viz_size == 0 else args.viz_size
  visualizer = HtmlPageVisualizer(
      num_rows=num_pairs, num_cols=len(headers), viz_size=viz_size)
  visualizer.set_headers(headers)

  # Diffuse images.
  logger.info(f'Start diffusion.')
  latent_codes = []
  for target_idx in tqdm(range(num_targets), desc='Target ID', leave=False):
    # Load target.
    target_image = resize_image(load_image(target_list[target_idx]),
                                (image_size, image_size))
    visualizer.set_cell(target_idx * num_contexts, 0, image=target_image)
    for context_idx in tqdm(range(num_contexts), desc='Context ID',
                            leave=False):
      row_idx = target_idx * num_contexts + context_idx
      context_image = resize_image(load_image(context_list[context_idx]),
                                   (image_size, image_size))
      visualizer.set_cell(row_idx, 1, image=context_image)
      code, viz_results = inverter.easy_diffuse(target=target_image,
                                                context=context_image,
                                                center_x=args.center_x,
                                                center_y=args.center_y,
                                                crop_x=args.crop_size,
                                                crop_y=args.crop_size,
                                                num_viz=args.num_results)
      for viz_idx, viz_img in enumerate(viz_results):
        visualizer.set_cell(row_idx, viz_idx + 2, image=viz_img)
      latent_codes.append(code)

  # Save results.

  os.system(f'cp {args.target_list} {output_dir}/target_list.txt')
  os.system(f'cp {args.context_list} {output_dir}/context_list.txt')
  np.save(f'{output_dir}/{job_name}_inverted_codes.npy',
          np.concatenate(latent_codes, axis=0))
  visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 12
0
def encode(_target_image, _context_image, _output_dir):
    gpu_id = '0'
    os.environ["CUDA_VISIBLE_DEVICES"] = gpu_id
    print(_target_image)
    assert os.path.exists('./static/' + _target_image)
    _output_dir = _output_dir[:-4]
    output_dir = './static/' + _output_dir

    tflib.init_tf({'rnd.np_random_seed': 1000})
    model_path = './styleganinv_face_256.pkl'
    with open(model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    crop_size = 110  # default crop size.
    center_x = 125
    center_y = 145
    crop_x = center_x - crop_size // 2  # default coordinate-X
    crop_y = center_y - crop_size // 2  # default coordinate-Y

    mask = np.zeros((1, image_size, image_size, 3), dtype=np.float32)
    mask[:, crop_y:crop_y + crop_size, crop_x:crop_x + crop_size, :] = 1.0

    # Build graph.
    sess = tf.get_default_session()

    batch_size = 4
    input_shape = E.input_shape
    input_shape[0] = batch_size  # default batch size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_mask = (tf.transpose(x, [0, 2, 3, 1]) + 1) * mask - 1
    x_mask_255 = (x_mask + 1) / 2 * 255

    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = batch_size  # default batch size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_mask = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) * mask - 1
    x_rec_mask_255 = (x_rec_mask + 1) / 2 * 255

    w_enc = E.get_output_for(x, phase=False)
    wp_enc = tf.reshape(w_enc, latent_shape)
    setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    print("Diffusion : Settings for Optimization.")
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_mask_255)
    x_rec_feat = perceptual_model(x_rec_mask_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x_mask - x_rec_mask), axis=[1, 2, 3])

    loss_weight_feat = 5e-5
    learning_rate = 0.01
    loss = loss_pix + loss_weight_feat * loss_feat  # default The perceptual loss scale for optimization. (default 5e-5)
    optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Invert image
    num_iterations = 100
    num_results = 5
    save_interval = num_iterations // num_results

    images = np.zeros(input_shape, np.uint8)

    print("Load target image.")
    _target_image = './static/' + _target_image
    target_image = resize_image(load_image(_target_image),
                                (image_size, image_size))
    save_image('./' + output_dir + '_tar.png', target_image)

    print("Load context image.")
    context_image = getContextImage(_context_image)
    context_image = resize_image(load_image(context_image),
                                 (image_size, image_size))
    save_image('./' + output_dir + '_cont.png', context_image)

    # Inverting Context Image.
    # context_image = invert(model_path, getContextImage(_context_image), wp, latent_shape)
    save_image('./' + output_dir + '_cont_inv.png', context_image)

    # Create Stitched Image
    # context_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size] = (
    #     target_image[crop_y:crop_y + crop_size, crop_x:crop_x + crop_size]
    # )
    # context_image[crop_y:crop_y + 170, crop_x - 70:crop_x + crop_size + 190] = (
    #     target_image[crop_y:crop_y + 170, crop_x - 70:crop_x + crop_size + 190]
    # )
    print("Cropping Image...")
    # context_image = cropImage(target_image, context_image)

    target_image, rect = cropWithWhite(target_image)
    target_image = fourChannels(target_image)
    target_image = cut(target_image)
    target_image = transBg(target_image)

    context_image = createStitchedImage(context_image, target_image, rect)
    save_image('./' + output_dir + '_sti.png', context_image)
    images[0] = np.transpose(context_image, [2, 0, 1])

    input = images.astype(np.float32) / 255 * 2.0 - 1.0

    # Run encoder
    print("Start Diffusion.")
    sess.run([setter], {x: input})
    output = sess.run([wp, x_rec])
    output[1] = adjust_pixel_range(output[1])

    col_idx = 4
    for step in tqdm(range(1, num_iterations + 1), leave=False):
        sess.run(train_op, {x: input})
        if step == num_iterations or step % save_interval == 0:
            output = sess.run([wp, x_rec])
            output[1] = adjust_pixel_range(output[1])
            if step == num_iterations:
                save_image(f'{output_dir}.png', output[1][0])
            col_idx += 1
    exit()
Ejemplo n.º 13
0
def invert(model_path, _image, _wp, _latent_shape):
    print("Inverting")
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    # Build graph.
    print("Inverting : Build Graph.")
    sess = tf.get_default_session()

    batch_size = 4
    input_shape = E.input_shape
    input_shape[0] = batch_size  # default batch size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_255 = (tf.transpose(x, [0, 2, 3, 1]) + 1) / 2 * 255

    wp = _wp
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_255 = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) / 2 * 255

    w_enc = E.get_output_for(x, phase=False)
    wp_enc = tf.reshape(w_enc, _latent_shape)
    setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    print("Inverting : Settings for Optimization.")
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_255)
    x_rec_feat = perceptual_model(x_rec_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x - x_rec), axis=[1, 2, 3])
    w_enc_new = E.get_output_for(x_rec, phase=False)
    wp_enc_new = tf.reshape(w_enc_new, _latent_shape)
    loss_enc = tf.reduce_mean(tf.square(wp - wp_enc_new), axis=[1, 2])
    loss = (loss_pix + 5e-5 * loss_feat + 2.0 * loss_enc)
    optimizer = tf.train.AdamOptimizer(learning_rate=0.01)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Invert image
    print("Start Inverting.")
    num_iterations = 40
    num_results = 2
    save_interval = num_iterations // num_results

    context_images = np.zeros(input_shape, np.uint8)

    context_image = resize_image(load_image(_image), (image_size, image_size))

    # Inverting Context Image.
    context_images[0] = np.transpose(context_image, [2, 0, 1])
    context_input = context_images.astype(np.float32) / 255 * 2.0 - 1.0

    sess.run([setter], {x: context_input})
    context_output = sess.run([wp, x_rec])
    context_output[1] = adjust_pixel_range(context_output[1])
    context_image = np.transpose(context_images[0], [1, 2, 0])

    for step in tqdm(range(1, num_iterations + 1), leave=False):
        sess.run(train_op, {x: context_input})
        if step == num_iterations or step % save_interval == 0:
            context_output = sess.run([wp, x_rec])
            context_output[1] = adjust_pixel_range(context_output[1])
            if step == num_iterations: context_image = context_output[1][0]

    return context_image
Ejemplo n.º 14
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.image_list)
    image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
    output_dir = args.output_dir or f'results/inversion/{image_list_name}'
    logger = setup_logger(output_dir, 'inversion.log', 'inversion_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    x_255 = (tf.transpose(x, [0, 2, 3, 1]) + 1) / 2 * 255
    latent_shape = Gs.components.synthesis.input_shape
    latent_shape[0] = args.batch_size
    wp = tf.get_variable(shape=latent_shape, name='latent_code')
    x_rec = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
    x_rec_255 = (tf.transpose(x_rec, [0, 2, 3, 1]) + 1) / 2 * 255
    if args.random_init:
        logger.info(f'  Use random initialization for optimization.')
        wp_rnd = tf.random.normal(shape=latent_shape, name='latent_code_init')
        setter = tf.assign(wp, wp_rnd)
    else:
        logger.info(
            f'  Use encoder output as the initialization for optimization.')
        w_enc = E.get_output_for(x, is_training=False)
        wp_enc = tf.reshape(w_enc, latent_shape)
        setter = tf.assign(wp, wp_enc)

    # Settings for optimization.
    logger.info(f'Setting configuration for optimization.')
    perceptual_model = PerceptualModel([image_size, image_size], False)
    x_feat = perceptual_model(x_255)
    x_rec_feat = perceptual_model(x_rec_255)
    loss_feat = tf.reduce_mean(tf.square(x_feat - x_rec_feat), axis=[1])
    loss_pix = tf.reduce_mean(tf.square(x - x_rec), axis=[1, 2, 3])
    if args.domain_regularizer:
        logger.info(f'  Involve encoder for optimization.')
        w_enc_new = E.get_output_for(x_rec, is_training=False)
        wp_enc_new = tf.reshape(w_enc_new, latent_shape)
        loss_enc = tf.reduce_mean(tf.square(wp - wp_enc_new), axis=[1, 2])
    else:
        logger.info(f'  Do NOT involve encoder for optimization.')
        loss_enc = 0
    loss = (loss_pix + args.loss_weight_feat * loss_feat +
            args.loss_weight_enc * loss_enc)
    optimizer = tf.train.AdamOptimizer(learning_rate=args.learning_rate)
    train_op = optimizer.minimize(loss, var_list=[wp])
    tflib.init_uninitialized_vars()

    # Load image list.
    logger.info(f'Loading image list.')
    image_list = []
    with open(args.image_list, 'r') as f:
        for line in f:
            image_list.append(line.strip())

    # Invert images.
    logger.info(f'Start inversion.')
    save_interval = args.num_iterations // args.num_results
    headers = ['Name', 'Original Image', 'Encoder Output']
    for step in range(1, args.num_iterations + 1):
        if step == args.num_iterations or step % save_interval == 0:
            headers.append(f'Step {step:06d}')
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=len(image_list),
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    names = ['' for _ in range(args.batch_size)]
    latent_codes_enc = []
    latent_codes = []
    for img_idx in tqdm(range(0, len(image_list), args.batch_size),
                        leave=False):
        # Load inputs.
        batch = image_list[img_idx:img_idx + args.batch_size]
        for i, image_path in enumerate(batch):
            image = resize_image(load_image(image_path),
                                 (image_size, image_size))
            images[i] = np.transpose(image, [2, 0, 1])
            names[i] = os.path.splitext(os.path.basename(image_path))[0]
        inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
        # Run encoder.
        sess.run([setter], {x: inputs})
        outputs = sess.run([wp, x_rec])
        latent_codes_enc.append(outputs[0][0:len(batch)])
        outputs[1] = adjust_pixel_range(outputs[1])
        for i, _ in enumerate(batch):
            image = np.transpose(images[i], [1, 2, 0])
            save_image(f'{output_dir}/{names[i]}_ori.png', image)
            save_image(f'{output_dir}/{names[i]}_enc.png', outputs[1][i])
            visualizer.set_cell(i + img_idx, 0, text=names[i])
            visualizer.set_cell(i + img_idx, 1, image=image)
            visualizer.set_cell(i + img_idx, 2, image=outputs[1][i])
        # Optimize latent codes.
        col_idx = 3
        for step in tqdm(range(1, args.num_iterations + 1), leave=False):
            sess.run(train_op, {x: inputs})
            if step == args.num_iterations or step % save_interval == 0:
                outputs = sess.run([wp, x_rec])
                outputs[1] = adjust_pixel_range(outputs[1])
                for i, _ in enumerate(batch):
                    if step == args.num_iterations:
                        save_image(f'{output_dir}/{names[i]}_inv.png',
                                   outputs[1][i])
                    visualizer.set_cell(i + img_idx,
                                        col_idx,
                                        image=outputs[1][i])
                col_idx += 1
        latent_codes.append(outputs[0][0:len(batch)])

    # Save results.
    os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
    np.save(f'{output_dir}/encoded_codes.npy',
            np.concatenate(latent_codes_enc, axis=0))
    np.save(f'{output_dir}/inverted_codes.npy',
            np.concatenate(latent_codes, axis=0))
    visualizer.save(f'{output_dir}/inversion.html')
Ejemplo n.º 15
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    src_dir = args.src_dir
    src_dir_name = os.path.basename(src_dir.rstrip('/'))
    assert os.path.exists(src_dir)
    assert os.path.exists(f'{src_dir}/image_list.txt')
    assert os.path.exists(f'{src_dir}/inverted_codes.npy')
    dst_dir = args.dst_dir
    dst_dir_name = os.path.basename(dst_dir.rstrip('/'))
    assert os.path.exists(dst_dir)
    assert os.path.exists(f'{dst_dir}/image_list.txt')
    assert os.path.exists(f'{dst_dir}/inverted_codes.npy')
    output_dir = args.output_dir or 'results/interpolation'
    job_name = f'{src_dir_name}_TO_{dst_dir_name}'
    logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

    # Load model.
    logger.info(f'Loading generator.')
    generator = build_generator(args.model_name)

    # Load image and codes.
    logger.info(f'Loading images and corresponding inverted latent codes.')
    src_list = []
    with open(f'{src_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{src_dir}/{name}_ori.png')
            src_list.append(name)
    src_codes = np.load(f'{src_dir}/inverted_codes.npy')
    assert src_codes.shape[0] == len(src_list)
    num_src = src_codes.shape[0]
    dst_list = []
    with open(f'{dst_dir}/image_list.txt', 'r') as f:
        for line in f:
            name = os.path.splitext(os.path.basename(line.strip()))[0]
            assert os.path.exists(f'{dst_dir}/{name}_ori.png')
            dst_list.append(name)
    dst_codes = np.load(f'{dst_dir}/inverted_codes.npy')
    assert dst_codes.shape[0] == len(dst_list)
    num_dst = dst_codes.shape[0]

    # Interpolate images.
    logger.info(f'Start interpolation.')
    step = args.step + 2
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=num_src * num_dst,
                                    num_cols=step + 2,
                                    viz_size=viz_size)
    visualizer.set_headers(['Source', 'Source Inversion'] +
                           [f'Step {i:02d}' for i in range(1, step - 1)] +
                           ['Target Inversion', 'Target'])

    for src_idx in tqdm(range(num_src), leave=False):
        src_code = src_codes[src_idx:src_idx + 1]
        src_path = f'{src_dir}/{src_list[src_idx]}_ori.png'
        codes = interpolate(src_codes=np.repeat(src_code, num_dst, axis=0),
                            dst_codes=dst_codes,
                            step=step)
        for dst_idx in tqdm(range(num_dst), leave=False):
            dst_path = f'{dst_dir}/{dst_list[dst_idx]}_ori.png'
            output_images = generator.easy_synthesize(
                codes[dst_idx], latent_space_type='wp')['image']

            row_idx = src_idx * num_dst + dst_idx
            visualizer.set_cell(row_idx, 0, image=load_image(src_path))
            visualizer.set_cell(row_idx, step + 1, image=load_image(dst_path))
            for s, output_image in enumerate(output_images):
                visualizer.set_cell(row_idx, s + 1, image=output_image)

    # Save results.
    visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 16
0
def main():
  """Main function."""
  args = parse_args()
  os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
  style_dir = args.style_dir
  style_dir_name = os.path.basename(style_dir.rstrip('/'))
  assert os.path.exists(style_dir)
  assert os.path.exists(f'{style_dir}/image_list.txt')
  assert os.path.exists(f'{style_dir}/inverted_codes.npy')
  content_dir = args.content_dir
  content_dir_name = os.path.basename(content_dir.rstrip('/'))
  assert os.path.exists(content_dir)
  assert os.path.exists(f'{content_dir}/image_list.txt')
  assert os.path.exists(f'{content_dir}/inverted_codes.npy')
  output_dir = args.output_dir or 'results/style_mixing'
  job_name = f'{style_dir_name}_STYLIZE_{content_dir_name}'
  logger = setup_logger(output_dir, f'{job_name}.log', f'{job_name}_logger')

  # Load model.
  logger.info(f'Loading generator.')
  tflib.init_tf({'rnd.np_random_seed': 1000})
  with open(args.model_path, 'rb') as f:
    _, _, _, Gs = pickle.load(f)

  # Build graph.
  logger.info(f'Building graph.')
  sess = tf.get_default_session()
  num_layers, latent_dim = Gs.components.synthesis.input_shape[1:3]
  wp = tf.placeholder(
      tf.float32, [args.batch_size, num_layers, latent_dim], name='latent_code')
  x = Gs.components.synthesis.get_output_for(wp, randomize_noise=False)
  mix_layers = list(range(args.mix_layer_start_idx, num_layers))

  # Load image and codes.
  logger.info(f'Loading images and corresponding inverted latent codes.')
  style_list = []
  with open(f'{style_dir}/image_list.txt', 'r') as f:
    for line in f:
      name = os.path.splitext(os.path.basename(line.strip()))[0]
      assert os.path.exists(f'{style_dir}/{name}_ori.png')
      style_list.append(name)
  logger.info(f'Loading inverted latent codes.')
  style_codes = np.load(f'{style_dir}/inverted_codes.npy')
  assert style_codes.shape[0] == len(style_list)
  num_styles = style_codes.shape[0]
  content_list = []
  with open(f'{content_dir}/image_list.txt', 'r') as f:
    for line in f:
      name = os.path.splitext(os.path.basename(line.strip()))[0]
      assert os.path.exists(f'{content_dir}/{name}_ori.png')
      content_list.append(name)
  logger.info(f'Loading inverted latent codes.')
  content_codes = np.load(f'{content_dir}/inverted_codes.npy')
  assert content_codes.shape[0] == len(content_list)
  num_contents = content_codes.shape[0]

  # Mix styles.
  logger.info(f'Start style mixing.')
  viz_size = None if args.viz_size == 0 else args.viz_size
  visualizer = HtmlPageVisualizer(
      num_rows=num_styles + 1, num_cols=num_contents + 1, viz_size=viz_size)
  visualizer.set_headers(
      ['Style'] +
      [f'Content {i:03d}' for i in range(num_contents)]
  )
  for style_idx, style_name in enumerate(style_list):
    style_image = load_image(f'{style_dir}/{style_name}_ori.png')
    visualizer.set_cell(style_idx + 1, 0, image=style_image)
  for content_idx, content_name in enumerate(content_list):
    content_image = load_image(f'{content_dir}/{content_name}_ori.png')
    visualizer.set_cell(0, content_idx + 1, image=content_image)

  codes = mix_style(style_codes=style_codes,
                    content_codes=content_codes,
                    num_layers=num_layers,
                    mix_layers=mix_layers)
  inputs = np.zeros((args.batch_size, num_layers, latent_dim), np.float32)
  for style_idx in tqdm(range(num_styles), leave=False):
    output_images = []
    for idx in range(0, num_contents, args.batch_size):
      batch = codes[style_idx, idx:idx + args.batch_size]
      inputs[0:len(batch)] = batch
      images = sess.run(x, feed_dict={wp: inputs})
      output_images.append(images[0:len(batch)])
    output_images = adjust_pixel_range(np.concatenate(output_images, axis=0))
    for content_idx, output_image in enumerate(output_images):
      visualizer.set_cell(style_idx + 1, content_idx + 1, image=output_image)

  # Save results.
  visualizer.save(f'{output_dir}/{job_name}.html')
Ejemplo n.º 17
0
def main():
    """Main function."""
    args = parse_args()
    os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
    assert os.path.exists(args.image_list)
    image_list_name = os.path.splitext(os.path.basename(args.image_list))[0]
    output_dir = args.output_dir or f'results/ghfeat/{image_list_name}'
    logger = setup_logger(output_dir, 'extract_feature.log',
                          'inversion_logger')

    logger.info(f'Loading model.')
    tflib.init_tf({'rnd.np_random_seed': 1000})
    with open(args.model_path, 'rb') as f:
        E, _, _, Gs = pickle.load(f)

    # Get input size.
    image_size = E.input_shape[2]
    assert image_size == E.input_shape[3]

    G_args = EasyDict(func_name='training.networks_stylegan.G_synthesis')
    G_style_mod = tflib.Network('G_StyleMod',
                                resolution=image_size,
                                label_size=0,
                                **G_args)
    Gs_vars_pairs = {
        name: tflib.run(val)
        for name, val in Gs.components.synthesis.vars.items()
    }
    for g_name, g_val in G_style_mod.vars.items():
        tflib.set_vars({g_val: Gs_vars_pairs[g_name]})

    # Build graph.
    logger.info(f'Building graph.')
    sess = tf.get_default_session()
    input_shape = E.input_shape
    input_shape[0] = args.batch_size
    x = tf.placeholder(tf.float32, shape=input_shape, name='real_image')
    ghfeat = E.get_output_for(x, is_training=False)
    x_rec = G_style_mod.get_output_for(ghfeat, randomize_noise=False)

    # Load image list.
    logger.info(f'Loading image list.')
    image_list = []
    with open(args.image_list, 'r') as f:
        for line in f:
            image_list.append(line.strip())

    # Extract GH-Feat from images.
    logger.info(f'Start feature extraction.')
    headers = ['Name', 'Original Image', 'Encoder Output']
    viz_size = None if args.viz_size == 0 else args.viz_size
    visualizer = HtmlPageVisualizer(num_rows=len(image_list),
                                    num_cols=len(headers),
                                    viz_size=viz_size)
    visualizer.set_headers(headers)

    images = np.zeros(input_shape, np.uint8)
    names = ['' for _ in range(args.batch_size)]
    features = []
    for img_idx in tqdm(range(0, len(image_list), args.batch_size),
                        leave=False):
        # Load inputs.
        batch = image_list[img_idx:img_idx + args.batch_size]
        for i, image_path in enumerate(batch):
            image = resize_image(load_image(image_path),
                                 (image_size, image_size))
            images[i] = np.transpose(image, [2, 0, 1])
            names[i] = os.path.splitext(os.path.basename(image_path))[0]
        inputs = images.astype(np.float32) / 255 * 2.0 - 1.0
        # Run encoder.
        outputs = sess.run([ghfeat, x_rec], {x: inputs})
        features.append(outputs[0][0:len(batch)])
        outputs[1] = adjust_pixel_range(outputs[1])
        for i, _ in enumerate(batch):
            image = np.transpose(images[i], [1, 2, 0])
            save_image(f'{output_dir}/{names[i]}_ori.png', image)
            save_image(f'{output_dir}/{names[i]}_enc.png', outputs[1][i])
            visualizer.set_cell(i + img_idx, 0, text=names[i])
            visualizer.set_cell(i + img_idx, 1, image=image)
            visualizer.set_cell(i + img_idx, 2, image=outputs[1][i])

    # Save results.
    os.system(f'cp {args.image_list} {output_dir}/image_list.txt')
    np.save(f'{output_dir}/ghfeat.npy', np.concatenate(features, axis=0))
    visualizer.save(f'{output_dir}/reconstruction.html')