Ejemplo n.º 1
0
    def __init__(self,
                 path_to_data,
                 sigma=0,
                 img_size=(480, 640),
                 split='test',
                 mvg_aug=False,
                 align_flag=True):

        self.name = 'nogt'
        self.root = os.path.expanduser(path_to_data)
        self.split = 'test'
        self.files = collections.defaultdict(list)
        self.img_size = img_size
        self.perform_calib = True

        for split in ['test']:
            path = pjoin(self.root, split + '_list.txt')
            file_list = tuple(open(path, 'r'))
            file_list = [id_.rstrip() for id_ in file_list]
            self.files[split] = file_list

        self.len = len(self.files[self.split])

        self.warp_by_flow = warp_by_flow(img_size[0], img_size[1], 1)

        flen = 520  #camparam[param_depth]['fx']
        norm = plane_correction(flen, img_size, False)
        # norm = np.expand_dims(norm, 2)
        self.plane_correction = norm
Ejemplo n.º 2
0
    def __init__(self,
                 path_to_data,
                 sigma=0,
                 split='train',
                 img_size=(480, 640),
                 mvg_aug=True,
                 align_flag=False):
        self.use_sigma = False
        if sigma > 0:
            self.use_sigma = True
        self.name = 'simtof'
        self.root = os.path.expanduser(path_to_data)
        self.split = split
        self.files = collections.defaultdict(list)
        self.img_size = img_size
        self.mvg_aug = mvg_aug
        self.align = align_flag

        ### set paths ####
        if self.align or self.mvg_aug:
            self.gt_path = 'gt_depth_rgb/'
        else:
            self.gt_path = 'gt_depth_rgb_small_pt/'
        ### end set paths ###
        for split in ['train', 'test']:
            path = pjoin(self.root, split + '_list.txt')
            file_list = tuple(open(path, 'r'))
            file_list = [id_.rstrip() for id_ in file_list]
            self.files[split] = file_list

        camparam = param_buffer(path_to_data + 'calib.bin')
        camparam = adjust_rotation(camparam, [1, 0, 0, 0, 1, 0, 0, 0, 1])
        camparam = adjust_translation(camparam, [0, 0, 0])
        camparam = adjust_distorsion(camparam, 0, 0)
        self.camparam = camparam

        rototrans_instance = RotoTransParam()
        self.avgrot = rototrans_instance.avgrot
        self.avgprpt = rototrans_instance.avgprpt
        self.avgtrans = rototrans_instance.avgtrans
        print(img_size)
        self.warp_by_flow = warp_by_flow(img_size[0], img_size[1], 1)

        norm = plane_correction(63.5, img_size)
        # norm = np.expand_dims(norm, 2)
        self.plane_correction = norm
        self.sigma = sigma

        self.len = len(self.files[self.split])
Ejemplo n.º 3
0
    def __init__(self,
                 path_to_data,
                 sigma=0,
                 split='train',
                 img_size=(480, 640),
                 mvg_aug=True,
                 align_flag=False):
        self.use_sigma = False
        if sigma > 0:
            self.use_sigma = True,
        self.name = 'real'
        self.root = os.path.expanduser(path_to_data +
                                       'RealData/vivo_data/test_vivo5/')
        self.split = split
        self.files = collections.defaultdict(list)
        self.img_size = img_size
        self.mvg_aug = mvg_aug
        self.align = align_flag

        for split in ['train', 'test']:
            path = pjoin(self.root, split + '_list.txt')
            file_list = tuple(open(path, 'r'))
            file_list = [id_.rstrip() for id_ in file_list]
            self.files[split] = file_list

        camparam = param_buffer_st(self.root + 'calib_verify.bin')
        camparam = adjust_rotation(camparam, [1, 0, 0, 0, 1, 0, 0, 0, 1])
        camparam = adjust_translation(camparam, [0, 0, 0])
        camparam = adjust_distorsion(camparam, 0, 0)
        self.path_to_data = path_to_data
        self.camparam = camparam

        rototrans_instance = RotoTransParam()
        self.avgrot = rototrans_instance.avgrot
        self.avgprpt = rototrans_instance.avgprpt
        self.avgtrans = rototrans_instance.avgtrans
        self.warp_by_flow = warp_by_flow(img_size[0], img_size[1], 1)

        flen = 520  #camparam[param_depth]['fx']
        norm = plane_correction(flen, img_size, False)
        # norm = np.expand_dims(norm, 2)
        self.plane_correction = norm
        self.sigma = sigma
        self.len = len(self.files[self.split])