Ejemplo n.º 1
0
 def plurality_value(examples):
     """
     Return the most popular target value for this set of examples.
     (If target is binary, this is the majority; otherwise plurality).
     """
     popular = argmax_random_tie(values[target], key=lambda v: count(target, v, examples))
     return DecisionLeaf(popular)
Ejemplo n.º 2
0
    def hill_climbing(self, problem, map_canvas):
        """ hill climbing where number of neighbors is taken as user input """

        def find_neighbors(state, number_of_neighbors=100):
            """ finds neighbors using two_opt method """

            neighbors = []
            for i in range(number_of_neighbors):
                new_state = problem.two_opt(state)
                neighbors.append(Node(new_state))
                state = new_state
            return neighbors

        current = Node(problem.initial)
        while(1):
            neighbors = find_neighbors(current.state, self.no_of_neighbors.get())
            neighbor = utils.argmax_random_tie(neighbors, key=lambda node: problem.value(node.state))
            map_canvas.delete('poly')
            points = []
            for city in current.state:
                points.append(self.frame_locations[city][0])
                points.append(self.frame_locations[city][1])
            map_canvas.create_polygon(points, outline='red', width=3, fill='', tag='poly')
            neighbor_points = []
            for city in neighbor.state:
                neighbor_points.append(self.frame_locations[city][0])
                neighbor_points.append(self.frame_locations[city][1])
            map_canvas.create_polygon(neighbor_points, outline='red', width=1, fill='', tag='poly')
            map_canvas.update()
            map_canvas.after(self.speed.get())
            if problem.value(neighbor.state) > problem.value(current.state):
                current.state = neighbor.state
                self.cost.set("Cost = " + str('%0.3f' % (-1 * problem.value(current.state))))
Ejemplo n.º 3
0
def hill_climbing(problem):
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(neighbors,
                                     key=lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break
        current = neighbor
    return current.state
Ejemplo n.º 4
0
    def hill_climbing(self, problem, map_canvas):
        """ hill climbing where number of neighbors is taken as user input """
        def find_neighbors(state, number_of_neighbors=100):
            """ finds neighbors using two_opt method """

            neighbors = []
            for i in range(number_of_neighbors):
                new_state = problem.two_opt(state)
                neighbors.append(Node(new_state))
                state = new_state
            return neighbors

        current = Node(problem.initial)
        tiempo_inicial = time()
        while (1):
            print("kd")
            neighbors = find_neighbors(current.state,
                                       self.no_of_neighbors.get())
            neighbor = utils.argmax_random_tie(
                neighbors, key=lambda node: problem.value(node.state))
            map_canvas.delete('poly')
            points = []
            for city in current.state:
                points.append(self.frame_locations[city][0])
                points.append(self.frame_locations[city][1])
            map_canvas.create_polygon(points,
                                      outline='red',
                                      width=3,
                                      fill='',
                                      tag='poly')
            neighbor_points = []
            for city in neighbor.state:
                neighbor_points.append(self.frame_locations[city][0])
                neighbor_points.append(self.frame_locations[city][1])
            map_canvas.create_polygon(neighbor_points,
                                      outline='red',
                                      width=1,
                                      fill='',
                                      tag='poly')
            map_canvas.update()
            map_canvas.after(self.speed.get())
            if problem.value(neighbor.state) > problem.value(current.state):
                current.state = neighbor.state
                self.cost.set("Cost = " +
                              str('%0.3f' %
                                  (-1 * problem.value(current.state))))

        tiempo_final = time()

        tiempo_ejecucion = tiempo_final - tiempo_inicial

        print('El tiempo de ejecucion fue:', tiempo_ejecucion)  #En segundos
Ejemplo n.º 5
0
def hill_climbing(problem):
    """From the initial node, keep choosing the neighbor with highest value"""
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(
            neighbors, key=lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break
        current = neighbor
    return current.state
Ejemplo n.º 6
0
def hill_climbing(problem):
    """From the initial node, keep choosing the neighbor with highest value,
    stopping when no neighbor is better. [Fig. 4.2]"""
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(neighbors,
                                     lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break
        current = neighbor
    return current.state
Ejemplo n.º 7
0
def hill_climbing(problem):
    """From the initial node, keep choosing the neighbor with highest value,
    stopping when no neighbor is better. [Figure 4.2]"""
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(
            neighbors, key=lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break
        current = neighbor
        print('.', end='', flush=True)
    return current.state
Ejemplo n.º 8
0
def alphabeta_search(state, game, d=4, cutoff_test=None, eval_fn=None):
    """Search game to determine best action; use alpha-beta pruning.
    This version cuts off search and uses an evaluation function."""
    player = game.to_move(state)

    def max_value(state, alpha, beta, depth):
        if cutoff_test(state, depth):
            return eval_fn(state)
        v = -infinity
        succ = game.successors(state)
        for (a, s) in succ:
            v = max(v, min_value(s, alpha, beta, depth+1))
            if v >= beta:
                succ.close()
                return v
            alpha = max(alpha, v)
        return v

    def min_value(state, alpha, beta, depth):
        if cutoff_test(state, depth):
            return eval_fn(state)
        v = infinity
        succ = game.successors(state)
        for (a, s) in succ:
            v = min(v, max_value(s, alpha, beta, depth+1))
            if v <= alpha:
                succ.close()
                return v
            beta = min(beta, v)
        return v

    # Body of alphabeta_search starts here:
    # The default test cuts off at depth d or at a terminal state
    cutoff_test = (cutoff_test or
                   (lambda state,depth: depth>d or game.terminal_test(state)))
    eval_fn = eval_fn or (lambda state: game.utility(player, state))
    action, state = argmax_random_tie(game.successors(state),
                                      lambda ((a, s)): min_value(s, -infinity,
                                                       infinity, 0))
    return action
Ejemplo n.º 9
0
def decision_tree_learning(examples, attributes, parent_examples, classes_list):
	
	#
	# Checks if the given examples have the same classification
	# examples: [{exampledictionary}, 'class']
	# return: pair with (true/false, the classification)
	sameclass,classification = is_same(examples)

	if len(examples)==0: return Tree(plurality_value(parent_examples))
	elif sameclass: return Tree(classification)
	elif len(attributes)==0: return Tree(plurality_value(examples))
	else:
		# create a list of the attribute names (attributes.keys()), calculate the importance of each of
		# them, then get the one with highest value
		#attributename = argmax(attributes.keys(), lambda ((a)): importance(a, examples, attributes,classes_list))
		attributename = argmax_random_tie(attributes.keys(), lambda ((a)): importance(a, examples, attributes,classes_list))
		
		tree = Tree(attributename)
		
		for vk in attributes[attributename]:
			exs = []
			for example in examples:
				exvalues = example[0]
				if exvalues[attributename] == vk:
					exs.append(example)

			newattributes = remove_dict_entry(attributename, attributes) #remove_member(attribute, attibutes)
			subtree = decision_tree_learning(exs, newattributes, examples,classes_list)
			#subtree = decision_tree_learning(exs, attributes, examples,classes_list)

			# make a label by combining attribute name with a spacific
			# attribute value
			label = str(vk) #{attribute.key:vk} 
			tree.add_branch(label, subtree)

		return tree
Ejemplo n.º 10
0
 def choose_attribute(attrs, examples):
     """Choose the attribute with the highest information gain."""
     return argmax_random_tie(attrs,
                              key=lambda a: information_gain(a, examples))
Ejemplo n.º 11
0
 def choose_attribute(attrs, examples):
     "Choose the attribute with the highest information gain."
     return argmax_random_tie(attrs,
                              key=lambda a: information_gain(a, examples))
Ejemplo n.º 12
0
 def plurality_value(examples):
     """Return the most popular target value for this set of examples.
     (If target is binary, this is the majority; otherwise plurality.)"""
     popular = argmax_random_tie(values[target],
                                 key=lambda v: count(target, v, examples))
     return DecisionLeaf(popular)
Ejemplo n.º 13
0
 def plurality_value(examples):
     popular = argmax_random_tie(values[target],
                                 key=lambda v: count(target, v, examples))
     return DecisionLeaf(popular)
Ejemplo n.º 14
0
 def arbitrate(self):
     self.most_desirable = argmax_random_tie(self.evaluators, lambda e: e.calculate_desirability())
     self.most_desirable.set_goal()
Ejemplo n.º 15
0
 def arbitrate(self):
     self.most_desirable = argmax_random_tie(
         self.evaluators, lambda e: e.calculate_desirability())
     self.most_desirable.set_goal()
Ejemplo n.º 16
0
 def plurality_value(self, examples):
     """Return the most popular target value for this set of examples."""
     return argmax_random_tie(self.values[self.target], key=lambda v: self.count(self.target, v, examples))