Ejemplo n.º 1
0
 def _batch_unshuffle_ddp(self, x, idx_unshuffle):
     batch_size_this = x.shape[0]
     x_gather = concat_all_gather(x)
     batch_size_all = x_gather.shape[0]
     num_gpus = batch_size_all // batch_size_this
     gpu_idx = dist.get_rank()
     idx_this = idx_unshuffle.view(num_gpus, -1)[gpu_idx]
     
     return x_gather[idx_this]
Ejemplo n.º 2
0
 def _deque_and_enqueue(self, keys):
     keys = concat_all_gather(keys)
     batch_size = keys.shape[0]
     pointer = int(self.queue_pointer) # self.queue_pointer.item()
     
     assert self.K % batch_size == 0
     self.neg_queue[:, pointer: pointer + batch_size] = keys.t()
     pointer = (pointer + batch_size) % self.K
     
     self.queue_pointer[0] = pointer
Ejemplo n.º 3
0
 def _batch_shuffle_ddp(self, x):
     batch_size_this = x.shape[0]
     x_gather = concat_all_gather(x)
     batch_size_all = x_gather.shape[0]
     num_gpus = batch_size_all // batch_size_this
     idx_shuffle = torch.randperm(batch_size_all).cuda()
     dist.broadcast(idx_shuffle, src=0)
     idx_unshuffle = torch.argsort(idx_shuffle)
     gpu_idx = dist.get_rank()
     idx_this = idx_shuffle.view(num_gpus, -1)[gpu_idx]
     
     return x_gather[idx_this], idx_unshuffle
Ejemplo n.º 4
0
    def _dequeue_and_enqueue(self, keys):
        # gather keys before updating queue
        if self.hparams.gather_keys_for_queue:
            keys = utils.concat_all_gather(keys)

        batch_size = keys.shape[0]

        ptr = int(self.queue_ptr)
        assert self.hparams.K % batch_size == 0  # for simplicity

        # replace the keys at ptr (dequeue and enqueue)
        self.queue[:, ptr:ptr + batch_size] = keys.T
        ptr = (ptr + batch_size) % self.hparams.K  # move pointer

        self.queue_ptr[0] = ptr