Ejemplo n.º 1
0
    def __init__(self, in_channels=3, num_classes=1000):
        super(InceptionNet, self).__init__()
        self.conv1 = conv_block(in_channels=in_channels,
                                out_channels=64,
                                kernel_size=(7, 7),
                                stride=(2, 2),
                                padding=(3, 3))
        self.maxpool1 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
        self.conv2 = conv_block(64, 192, kernel_size=3, stride=1, padding=1)
        self.maxpool2 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        # in_channels, out_1x1, red_3x3, out_3x3, red_5x5, out_5x5, out_1x1pool
        self.inception3a = InceptionBlock(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = InceptionBlock(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.inception4a = InceptionBlock(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = InceptionBlock(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = InceptionBlock(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = InceptionBlock(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = InceptionBlock(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.inception5a = InceptionBlock(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = InceptionBlock(832, 384, 192, 384, 48, 128, 128)

        self.avgpool = nn.AvgPool2d(kernel_size=7, stride=1)
        self.dropout = nn.Dropout(p=0.4)
        self.fc1 = nn.Linear(1024, 1000)
Ejemplo n.º 2
0
    def forward_conv_CNN(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')

        # Flattening of blocks 3 and 4
        hidden3 = tf.reshape(
            hidden3,
            [-1, np.prod([int(dim) for dim in hidden3.get_shape()[1:]])])
        hidden4 = tf.reshape(
            hidden4,
            [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])

        # Concatenate
        flatconcat34 = tf.concat(
            [hidden3, hidden4],
            axis=1)  # keep batched (axis 0), concatenate columns (axis 1)

        return flatconcat34
Ejemplo n.º 3
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels

        if FLAGS.datasource == 'kdd':
            inp = tf.reshape(inp, [-1, self.dim_input, 1, 1])
        else:
            inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 4
0
    def forward_conv_Ls(self, inp, L, s, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        w1 = tf.tensordot(L['conv1'], s['conv1'],1)
        w2 = tf.tensordot(L['conv2'], s['conv2'],1)
        w3 = tf.tensordot(L['conv3'], s['conv3'],1)
        w4 = tf.tensordot(L['conv4'], s['conv4'],1)
        w5 = tf.tensordot(L['w5'], s['w5'],1)


        hidden1 = conv_block(inp, w1, L['b1'], reuse, scope+'0')
        hidden2 = conv_block(hidden1, w2, L['b2'], reuse, scope+'1')
        hidden3 = conv_block(hidden2, w3, L['b3'], reuse, scope+'2')
        hidden4 = conv_block(hidden3, w4, L['b4'], reuse, scope+'3')


        if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'cifar100':
            # last hidden layer is 6x6x64-ish, reshape to a vector, last hidden layer of cifar100 is 2x2x32
            hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return tf.matmul(hidden4, w5) + L['b5']
Ejemplo n.º 5
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        # -1表示第一个维度,可能是batch_size,数量根据数据量自动变化
        '''
        x = [1 2 3 4 5 6]
        reshape(x, [3,-1])
        >> [[1 2]
            [3 4]
            [5 6]]
        '''
        inp = tf.reshape(inp, [-1, self.img_size_x, self.img_size_y, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        print('hidden4_1:{}'.format(hidden4))  # (5, 1, 2, 32),

        hidden4 = tf.reshape(
            hidden4,
            [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])

        print('hidden4_2:{}'.format(hidden4))  # (5, 64)

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 6
0
    def forward_conv(self, inp, weights, prefix, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'celeba':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        logits = tf.matmul(hidden4, weights['w5']) + weights['b5']

        if 'val' in prefix:
            logits = tf.gather(logits, tf.range(self.dim_output_val), axis=1)
        return logits
Ejemplo n.º 7
0
    def forward_alexnet(self, inp, weights, reuse=False):
        # reuse is for the normalization parameters.

        conv1 = conv_block(inp, weights['conv1_weights'], weights['conv1_biases'], stride_y=4, stride_x=4, groups=1, reuse=reuse, scope='conv1')
        norm1 = lrn(conv1, 2, 1e-05, 0.75)
        pool1 = max_pool(norm1, 3, 3, 2, 2, padding='VALID')

        # 2nd Layer: Conv (w ReLu)  -> Lrn -> Pool with 2 groups
        conv2 = conv_block(pool1, weights['conv2_weights'], weights['conv2_biases'], stride_y=1, stride_x=1, groups=2, reuse=reuse, scope='conv2')
        norm2 = lrn(conv2, 2, 1e-05, 0.75)
        pool2 = max_pool(norm2, 3, 3, 2, 2, padding='VALID')

        # 3rd Layer: Conv (w ReLu)
        conv3 = conv_block(pool2, weights['conv3_weights'], weights['conv3_biases'], stride_y=1, stride_x=1, groups=1, reuse=reuse, scope='conv3')

        # 4th Layer: Conv (w ReLu) splitted into two groups
        conv4 = conv_block(conv3, weights['conv4_weights'], weights['conv4_biases'], stride_y=1, stride_x=1, groups=2, reuse=reuse, scope='conv4')

        # 5th Layer: Conv (w ReLu) -> Pool splitted into two groups
        conv5 = conv_block(conv4, weights['conv5_weights'], weights['conv5_biases'], stride_y=1, stride_x=1, groups=2, reuse=reuse, scope='conv5')
        pool5 = max_pool(conv5, 3, 3, 2, 2, padding='VALID')

        # 6th Layer: Flatten -> FC (w ReLu) -> Dropout
        flattened = tf.reshape(pool5, [-1, 6 * 6 * 256])
        fc6 = fc(flattened, weights['fc6_weights'], weights['fc6_biases'], activation='relu')
        dropout6 = dropout(fc6, self.KEEP_PROB)

        # 7th Layer: FC (w ReLu) -> Dropout
        fc7 = fc(dropout6, weights['fc7_weights'], weights['fc7_biases'], activation='relu')
        dropout7 = dropout(fc7, self.KEEP_PROB)

        # 8th Layer: FC and return unscaled activations
        fc8 = fc(dropout7, weights['fc8_weights'], weights['fc8_biases'])

        return fc7, fc8
Ejemplo n.º 8
0
 def forward_conv(self, inp, weights, reuse=True):
     scope = ''
     with tf.name_scope("forward_conv"):
         hidden1 = conv_block(inp, weights['conv1'], weights['b1'], scope+'1', reuse)
         hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], scope+'2',reuse)
         hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], scope+'3',reuse)
         hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], scope+'4',reuse)
     return hidden4
Ejemplo n.º 9
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope + '3')

        hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 10
0
	def forward_conv(self, inp, weights, reuse=False, scope=''):
		# reuse is for the normalization parameters.
		channels = self.channels
		inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

		hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope+'0')
		hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope+'1')
		hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope+'2')
		hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope+'3')
		hidden4 = tf.reduce_mean(hidden4, [1, 2])

		return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 11
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope + '3')
        if FLAGS.datasource in ['miniimagenet', 'multidataset', 'multidataset_leave_one_out']:
            hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 12
0
    def forward_conv(self,
                     inp,
                     weights,
                     reuse=False,
                     meta_testing=False,
                     scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])
        hidden4 = tf.matmul(hidden4, weights['w5']) + weights['b5']
        if meta_testing:
            return hidden4
        else:
            temporal_num_filters = FLAGS.temporal_num_filters
            num_temporal_layers = FLAGS.num_temporal_layers
            temporal_num_filters = num_temporal_layers * [temporal_num_filters]
            output = tf.expand_dims(tf.nn.softmax(hidden4, dim=1), axis=0)
            for j in range(len(temporal_num_filters)):
                if j != len(temporal_num_filters) - 1:
                    output = conv_block(output,
                                        weights['w_1d_conv_2_head_%d' % j],
                                        weights['b_1d_conv_2_head_%d' % j],
                                        reuse,
                                        scope + str(j + 5),
                                        temporal=True)
                else:
                    output = tf.nn.conv1d(
                        output,
                        weights['w_1d_conv_2_head_%d' % j],
                        stride=1,
                        padding='SAME') + weights['b_1d_conv_2_head_%d' % j]
            return tf.squeeze(output)
Ejemplo n.º 13
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope+'0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope+'1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope+'2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope+'3')
        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 14
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope+'0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope+'1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope+'2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope+'3')
        
        # last hidden layer is 6x6x64-ish, reshape to a vector
        hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        print(hidden4.get_shape().as_list())
        print(weights['w5'].get_shape().as_list())
        
        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 15
0
    def forward_conv(self, inp, weights, index=-1, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        e = index
        hidden1 = conv_block(inp,
                             weights['conv1_' + str(e)],
                             weights['b1_' + str(e)],
                             reuse,
                             scope=str(e) + '_0')
        hidden2 = conv_block(hidden1,
                             weights['conv2_' + str(e)],
                             weights['b2_' + str(e)],
                             reuse,
                             scope=str(e) + '_1')
        hidden3 = conv_block(hidden2,
                             weights['conv3_' + str(e)],
                             weights['b3_' + str(e)],
                             reuse,
                             scope=str(e) + '_2')
        hidden4 = conv_block(hidden3,
                             weights['conv4_' + str(e)],
                             weights['b4_' + str(e)],
                             reuse,
                             scope=str(e) + '_3')

        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        output = tf.matmul(hidden4,
                           weights['w5_' + str(e)]) + weights['b5_' + str(e)]

        return output
Ejemplo n.º 16
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')

        gamma1 = tf.matmul(weights['sigma_1'], weights['film_1a'])
        beta1 = tf.matmul(weights['sigma_1'], weights['film_1b'])
        film1 = film_block(hidden1, gamma1, beta1)

        hidden2 = conv_block(film1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        gamma2 = tf.matmul(weights['sigma_1'], weights['film_2a'])
        beta2 = tf.matmul(weights['sigma_1'], weights['film_2b'])
        film2 = film_block(hidden2, gamma2, beta2)

        hidden3 = conv_block(film2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        gamma3 = tf.matmul(weights['sigma_1'], weights['film_3a'])
        beta3 = tf.matmul(weights['sigma_1'], weights['film_3b'])
        film3 = film_block(hidden3, gamma3, beta3)

        hidden4 = conv_block(film3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        gamma4 = tf.matmul(weights['sigma_1'], weights['film_4a'])
        beta4 = tf.matmul(weights['sigma_1'], weights['film_4b'])
        film4 = film_block(hidden4, gamma4, beta4)

        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(
                film4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(film4, [1, 2])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 17
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        # tinp = deconv_block(hidden1, weights['conv10'], weights['b10'], reuse, scope+'10')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        # thidden1 = deconv_block(hidden2, weights['conv9'], weights['b9'], reuse, scope+'9')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        # thidden2 = deconv_block(hidden3, weights['conv8'], weights['b8'], reuse, scope+'8')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')
        # thidden3 = deconv_block(hidden4, weights['conv7'], weights['b7'], reuse, scope+'7')
        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden5 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden5 = tf.reduce_mean(hidden4, [1, 2])

        # output = tf.matmul(hidden4, weights['w5']) + weights['b5']
        # thidden4 = tf.matmul(output, weights['w6']) + weights['b6']

        # forward_loss = [self.loss_func(hidden1, thidden1), self.loss_func(hidden2, thidden2), \
        #                 self.loss_func(hidden3, thidden3), self.loss_func(hidden4, thidden4), output]
        # backward_loss = [conv_loss(inp, tinp), conv_loss(hidden1, thidden1), conv_loss(hidden2, thidden2), \
        #                 conv_loss(hidden3, thidden3), conv_loss(hidden4, thidden4)]

        return [
            inp, hidden1, hidden2, hidden3, hidden4,
            tf.matmul(hidden5, weights['w5']) + weights['b5']
        ]
Ejemplo n.º 18
0
    def relation(self, fea, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        fea = tf.reshape(fea, [-1, 5, 5, 32])

        re1 = conv_block(fea,
                         weights['conv-r1'],
                         weights['b-r1'],
                         reuse,
                         scope + 'r0',
                         max_pool_pad='SAME')
        re2 = conv_block(re1,
                         weights['conv-r2'],
                         weights['b-r2'],
                         reuse,
                         scope + 'r1',
                         max_pool_pad='SAME')
        re2 = tf.reshape(
            re2, [-1, np.prod([int(dim) for dim in re2.get_shape()[1:]])])
        re3 = tf.matmul(re2, weights['w-r3']) + weights['b-r3']
        re3 = tf.nn.relu(re3)
        re4 = tf.matmul(re3, weights['w-r4']) + weights['b-r4']

        return re4
Ejemplo n.º 19
0
    def get_embeddings(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])
        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse,
                             scope + '0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse,
                             scope + '1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse,
                             scope + '2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse,
                             scope + '3')

        if FLAGS.datasource == 'miniimagenet' or FLAGS.datasource == 'isic':
            # last hidden layer is 5x5x64, reshape to a vector
            hidden4 = tf.reshape(
                hidden4,
                [-1,
                 np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return hidden4
Ejemplo n.º 20
0
    def forward_conv(self, inp, weights, reuse=False, scope=''):
        # reuse is for the normalization parameters.
        if FLAGS.baseline and 'context_vector' == FLAGS.baseline:
            channels = self.channels - 3  #self.context_size[-1]
            context = tf.tile(weights['context_var'], [FLAGS.update_batch_size*FLAGS.num_classes, 1])  #
            context = tf.reshape(context, [FLAGS.update_batch_size*FLAGS.num_classes, self.img_size,self.img_size,3])
        else:
            channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        if FLAGS.baseline and 'context_vector' == FLAGS.baseline:
            inp = tf.concat([inp, context], 3)

        hidden1 = conv_block(inp, weights['conv1'], weights['b1'], reuse, scope+'0')
        hidden2 = conv_block(hidden1, weights['conv2'], weights['b2'], reuse, scope+'1')
        hidden3 = conv_block(hidden2, weights['conv3'], weights['b3'], reuse, scope+'2')
        hidden4 = conv_block(hidden3, weights['conv4'], weights['b4'], reuse, scope+'3')
        if FLAGS.datasource == 'miniimagenet':
            # last hidden layer is 6x6x64-ish, reshape to a vector
            hidden4 = tf.reshape(hidden4, [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])
        else:
            hidden4 = tf.reduce_mean(hidden4, [1, 2])

        return tf.matmul(hidden4, weights['w5']) + weights['b5']
Ejemplo n.º 21
0
    def forward(self, inp, weights, reuse=False, scope=''):
        if FLAGS.vgg_path:
            inp = inp * 255.0 - tf.convert_to_tensor(np.array([103.939, 116.779, 123.68], np.float32))
            inp = inp[:, :, :, ::-1]

        conv_layer = tf.reshape(inp, [-1, self.im_height, self.im_width, self.channels])
        for i in range(self.num_conv_layers):
            conv_layer = conv_block(conv_layer, weights['conv%d_w' % (i+1)], weights['conv%d_b' % (i+1)], reuse, scope + 'conv%d' % (i+1))

        if FLAGS.fp:
            batch_size, num_rows, num_cols, num_fp = conv_layer.get_shape()

            num_rows, num_cols, num_fp = [int(x) for x in [num_rows, num_cols, num_fp]]

            x_map = np.empty([num_rows, num_cols], np.float32)
            y_map = np.empty([num_rows, num_cols], np.float32)

            for i in range(num_rows):
                for j in range(num_cols):
                    x_map[i, j] = (i - num_rows / 2.0) / num_rows
                    y_map[i, j] = (j - num_cols / 2.0) / num_cols

            x_map = tf.convert_to_tensor(x_map)
            y_map = tf.convert_to_tensor(y_map)

            x_map = tf.reshape(x_map, [num_rows * num_cols])
            y_map = tf.reshape(y_map, [num_rows * num_cols])

            features = tf.reshape(tf.transpose(conv_layer, [0, 3, 1, 2]), [-1, num_rows * num_cols])
            softmax = tf.nn.softmax(features)

            fp_x = tf.reduce_sum(tf.multiply(x_map, softmax), [1], keep_dims=True)
            fp_y = tf.reduce_sum(tf.multiply(y_map, softmax), [1], keep_dims=True)

            conv_out_flat = tf.reshape(tf.concat([fp_x, fp_y], 1), [-1, num_fp * 2])
        else:
            conv_out_flat = tf.reshape(conv_layer, [-1, self.conv_out_size])

        fc_layer = tf.reshape(conv_out_flat, [-1, self.conv_out_size])

        for i in range(self.num_fc_layers - 1):
            fc_layer = normalize(tf.matmul(fc_layer, weights['fc%d_w' % (i+1)]) + weights['fc%d_b' % (i+1)], tf.nn.relu, reuse, scope + 'fc%d' % (i+1))

        logits = tf.matmul(fc_layer, weights['fc%d_w' % (self.num_fc_layers)]) + weights['fc%d_b' % (self.num_fc_layers)]

        return logits
Ejemplo n.º 22
0
def protonet_graph(inputs, cfg):
    P3, P4, P5 = inputs
    # refine
    R1 = conv_block(P3, 128)
    R2 = conv_block(P4, 128)
    R2 = KL.UpSampling2D(size=(2, 2), interpolation='bilinear', name="protonet_refine2upsampled")(R2)
    R3 = conv_block(P5, 128)
    R3 = KL.UpSampling2D(size=(4, 4), interpolation='bilinear', name="protonet_refine3upsampled")(R3)
    bases = KL.Add(name="protonet_add")([R1, R2, R3])
    # tower
    for _ in range(3):
        bases = conv_block(bases, 128)
    bases = KL.UpSampling2D(2, interpolation='bilinear')(bases)
    bases = conv_block(bases, 128)
    bases = KL.Conv2D(4, kernel_size=(1, 1), strides=(1, 1), name='bases_out')(bases)
    # seg_head
    sem_out = P3
    for _ in range(2):
        sem_out = conv_block(sem_out, 128)
    sem_out = KL.Conv2D(cfg.DATA.NUM_CLASSES, kernel_size=(1, 1), strides=(1, 1))(sem_out)
    return bases, sem_out
Ejemplo n.º 23
0
    def forward_conv_CNN(self,
                         inp,
                         weights,
                         reuse=False,
                         scope='',
                         is_training=False):
        """ R2D2 model specification, CNN part:
        4 conv blocks:
        - 3x3 convolutions
        - batch-normalization
        - 2x2 max pooling
        - leaky relu (factor 0.1)
        - filters: [96, 192, 384, 512]
        - dropout on layer 3 and 4
        - concatenate flattened outputs of layer 3 and 4
        
        Args:
            <see forward_conv()>
        """

        channels = self.channels
        inp = tf.reshape(inp, [-1, self.img_size, self.img_size, channels])

        hidden1 = conv_block(inp,
                             weights['conv1'],
                             weights['b1'],
                             reuse,
                             scope + '0',
                             activation=self.activation)
        hidden2 = conv_block(hidden1,
                             weights['conv2'],
                             weights['b2'],
                             reuse,
                             scope + '1',
                             activation=self.activation)
        hidden3 = conv_block(hidden2,
                             weights['conv3'],
                             weights['b3'],
                             reuse,
                             scope + '2',
                             activation=self.activation)
        hidden3 = tf.layers.dropout(hidden3,
                                    rate=self.dropout,
                                    training=is_training)
        hidden4 = conv_block(hidden3,
                             weights['conv4'],
                             weights['b4'],
                             reuse,
                             scope + '3',
                             activation=self.activation)
        hidden4 = tf.layers.dropout(hidden4,
                                    rate=self.dropout,
                                    training=is_training)

        # Flattening of blocks 3 and 4
        hidden3 = tf.reshape(
            hidden3,
            [-1, np.prod([int(dim) for dim in hidden3.get_shape()[1:]])])
        hidden4 = tf.reshape(
            hidden4,
            [-1, np.prod([int(dim) for dim in hidden4.get_shape()[1:]])])

        # Concatenate
        flatconcat34 = tf.concat(
            [hidden3, hidden4],
            axis=1)  # keep batched (axis 0), concatenate columns (axis 1)

        return flatconcat34
Ejemplo n.º 24
0
def fcos_head_graph(inputs, cfg, top_layer=None):
    """return FCOS graph

    Arguments:
        inputs: input tensors
        cfg: dict
        top_layer:
        p:

    Returns:
        output tensors of FCOS
    """
    # FCOS Head
    cls_logits = []
    reg_logits = []
    ctr_logits = []
    top_feats = []

    input_head1 = KL.Input(shape=[None, None, 256], name='cls_head')
    x = input_head1
    for _ in range(4):
        x = conv_block(x, filters=256)
    _cls_logits = KL.Conv2D(cfg.DATA.NUM_CLASSES,
                            kernel_size=3,
                            strides=1,
                            padding="same",
                            name="cls_logits")(x)
    _ctr_logits = KL.Conv2D(1,
                            kernel_size=3,
                            strides=1,
                            padding="same",
                            name="ctr_logits")(x)
    _cls_logits = KL.Reshape(target_shape=[-1, cfg.DATA.NUM_CLASSES],
                             name="cls_logits_reshape")(_cls_logits)
    _ctr_logits = KL.Reshape(target_shape=[-1, 1],
                             name="ctr_logits_reshape")(_ctr_logits)
    cls_head = tf.keras.Model(inputs=[input_head1],
                              outputs=[_cls_logits, _ctr_logits],
                              name='cls_head')

    input_head2 = KL.Input(shape=[None, None, 256], name='reg_head')
    x = input_head2
    for _ in range(4):
        x = conv_block(x, filters=256)
    _reg_logits = KL.Conv2D(4,
                            kernel_size=3,
                            strides=1,
                            padding="same",
                            name="reg_logits")(x)
    reg_head = tf.keras.Model(inputs=[input_head2],
                              outputs=[_reg_logits],
                              name='reg_head')

    for feature in inputs:
        cls_feature = cls_head(feature)
        reg_feature = reg_head(feature)

        cls_logits.append(cls_feature[0])
        ctr_logits.append(cls_feature[1])
        reg_logits.append(KL.Reshape(target_shape=[-1, 4])(reg_feature))

        if top_layer is not None:
            top_feat = top_layer(reg_feature)
            top_feat = KL.Reshape([-1, 784])(top_feat)
            top_feats.append(top_feat)

    # cls_logits = KL.Concatenate(axis=1)(cls_logits)
    # reg_logits = KL.Concatenate(axis=1)(reg_logits)
    # ctr_logits = KL.Concatenate(axis=1)(ctr_logits)
    # top_feats = KL.Concatenate(axis=1)(top_feats)

    return cls_logits, reg_logits, ctr_logits, top_feats
Ejemplo n.º 25
0
 def build(self):
     inLayer = Input([self.latentSize], self.batchSize)
     x = Reshape((1, 1, self.latentSize))(inLayer)
     x = UpSampling2D((self.inputShape[0]//32, self.inputShape[1]//32))(x)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     x = conv_block(512, kernelSize = 1)(x, training = self.training)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     x = conv_block(512, kernelSize = 1)(x, training = self.training)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     x = UpSampling2D((2, 2))(x)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = conv_block(256, kernelSize = 1)(x, training = self.training)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = conv_block(256, kernelSize = 1)(x, training = self.training)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = UpSampling2D((2, 2))(x)
     x = conv_block(256, kernelSize = 3)(x, training = self.training)
     x = conv_block(128, kernelSize = 1)(x, training = self.training)
     x = conv_block(256, kernelSize = 3)(x, training = self.training)
     x = UpSampling2D((2, 2))(x)
     x = conv_block(128, kernelSize = 3)(x, training = self.training)
     x = conv_block(64, kernelSize = 1)(x, training = self.training)
     x = conv_block(128, kernelSize = 3)(x, training = self.training)
     x = UpSampling2D((2, 2))(x)
     x = conv_block(64, kernelSize = 3)(x, training = self.training)
     x = UpSampling2D((2, 2))(x)
     x = conv_block(32, kernelSize = 3)(x, training = self.training)
     x = conv_block(64, kernelSize = 1)(x, training = self.training)
     x = Conv2D(filters = self.inputShape[-1], kernel_size = (1, 1),
                   padding = 'same', activation = "tanh")(x)
     return Model(inLayer, x)
Ejemplo n.º 26
0
 def build(self):
     inLayer = Input(self.inputShape, self.batchSize)
     x = conv_block(32, kernelSize = 3)(inLayer, training = self.training)
     x = MaxPool2D((2, 2), strides = (2, 2))(x)
     x = conv_block(64, kernelSize = 3)(x, training = self.training)
     x = MaxPool2D((2, 2), strides = (2, 2))(x)
     x = conv_block(128, kernelSize = 3)(x, training = self.training)
     x = conv_block(64, kernelSize = 1)(x, training = self.training)
     x = conv_block(128, kernelSize = 3)(x, training = self.training)
     x = MaxPool2D((2, 2), strides = (2, 2))(x)
     x = conv_block(256, kernelSize = 3)(x, training = self.training)
     x = conv_block(128, kernelSize = 1)(x, training = self.training)
     x = conv_block(256, kernelSize = 3)(x, training = self.training)
     x = MaxPool2D((2, 2), strides = (2, 2))(x)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = conv_block(256, kernelSize = 1)(x, training = self.training)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = conv_block(256, kernelSize = 1)(x, training = self.training)
     x = conv_block(512, kernelSize = 3)(x, training = self.training)
     x = MaxPool2D((2, 2), strides=(2, 2))(x)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     x = conv_block(512, kernelSize = 1)(x, training = self.training)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     x = conv_block(512, kernelSize = 1)(x, training = self.training)
     x = conv_block(1024, kernelSize = 3)(x, training = self.training)
     mean = Conv2D(filters = self.latentSize, kernel_size = (1, 1),
                   padding = 'same')(x)
     mean = GlobalAveragePooling2D()(mean)
     logvar = Conv2D(filters = self.latentSize, kernel_size = (1, 1),
                     padding = 'same')(x)
     logvar = GlobalAveragePooling2D()(logvar)
     sample = latent_vector(self.latentConstraints, self.beta)([mean, logvar], training = self.training)
     return Model(inputs = inLayer, outputs = sample)
Ejemplo n.º 27
0
# Model Architecture

"""
"""## Step 1: Learning to DownSample"""

# Input Layer
#[1242, 378]
nb_classes = 34
input_size_height = 512
input_size_width = 512
input_layer = tf.keras.layers.Input(shape=(input_size_height, input_size_width,
                                           3),
                                    name='input_layer')
#input_layer = tf.keras.layers.Input(shape=(2048, 1024, 3), name = 'input_layer')

lds_layer = utils.conv_block(input_layer, 'conv', 32, (3, 3), strides=(2, 2))
lds_layer = utils.conv_block(lds_layer, 'ds', 48, (3, 3), strides=(2, 2))
lds_layer = utils.conv_block(lds_layer, 'ds', 64, (3, 3), strides=(2, 2))
"""## Step 2: Global Feature Extractor

"""
"""#### Assembling all the methods"""

gfe_layer = utils.bottleneck_block(lds_layer, 64, (3, 3), t=6, strides=2, n=3)
gfe_layer = utils.bottleneck_block(gfe_layer, 96, (3, 3), t=6, strides=2, n=3)
gfe_layer = utils.bottleneck_block(gfe_layer, 128, (3, 3), t=6, strides=1, n=3)
gfe_layer = utils.pyramid_pooling_block(gfe_layer, [2, 4, 6, 8])
"""## Step 3: Feature Fusion"""

ff_layer1 = utils.conv_block(lds_layer,
                             'conv',