def main(): base_dir = 'exper/voc12' gpu_id, model_name, iteration_num, phase, subset_dataset = process_arguments(sys.argv) if phase == 1: model_path = os.path.join(base_dir, 'model', model_name, 'train_iter_{}.caffemodel') elif phase == 2: model_path = os.path.join(base_dir, 'model', model_name, 'train2_iter_{}.caffemodel') if subset_dataset: net_path = os.path.join(model_name, 'deploy4.prototxt') class_names = ['bird', 'bottle', 'chair'] # CHANGE class_ids = get_id_classes(class_names) file_names = load_test_data(os.path.join(base_dir, 'list_subset/val_id.txt')) images_path = os.path.join(base_dir, 'data/images_orig') labels_path = os.path.join(base_dir, 'data/labels_sub_orig') else: net_path = os.path.join(model_name, 'deploy21.prototxt') class_ids = range(1,21) file_names = load_test_data(os.path.join(base_dir, 'list/val_id.txt')) images_path = os.path.join(base_dir, 'data/images_orig') labels_path = os.path.join(base_dir, 'data/labels_orig') lut = create_lut(class_ids) images, labels = create_full_paths(file_names, images_path, labels_path) test_net(net_path, model_path.format(iteration_num), images, labels, lut, gpu_id)
def convert2lmdb(path_src, src_imgs, ext, path_dst, class_ids, preprocess_mode, im_sz, data_mode): if os.path.isdir(path_dst): print('DB ' + path_dst + ' already exists.\n' 'Skip creating ' + path_dst + '.', file=sys.stderr) return None if data_mode == 'label': lut = create_lut(class_ids) db = lmdb.open(path_dst, map_size=int(1e12)) with db.begin(write=True) as in_txn: for idx, img_name in enumerate(src_imgs): #img = imread(os.path.join(path_src + img_name)+ext) img = np.array(Image.open(os.path.join(path_src + img_name) + ext)) img = img.astype(np.uint8) if data_mode == 'label': img = preprocess_label(img, lut, preprocess_mode, im_sz) elif data_mode == 'image': img = preprocess_image(img, preprocess_mode, im_sz) img_dat = caffe.io.array_to_datum(img) in_txn.put('{:0>10d}'.format(idx), img_dat.SerializeToString())
def main(): iteration_num = process_arguments(sys.argv) prototxt = 'TVG_CRFRNN_COCO_VOC_TEST_3_CLASSES.prototxt' caffemodel = 'models/train_iter_{}.caffemodel' class_names = ['bird', 'bottle', 'chair'] class_ids = get_id_classes(class_names) lut = create_lut(class_ids) file_names = load_test_data() images, labels = create_full_paths(file_names, 'images', 'labels') test_net(prototxt, caffemodel.format(iteration_num), images, labels, lut)
def main(): ## ext = '.png' class_names = ['bird', 'bottle', 'chair'] ## input_path, output_path, list_file, subset_data_file = process_arguments(sys.argv) clear_subset_list_logs(subset_data_file) class_ids = get_id_classes(class_names) lut = create_lut(class_ids) with open(list_file, 'rb') as f: for img_name in f: img_name = img_name.strip() img = contain_class(os.path.join(input_path, img_name)+ext, class_ids, lut) if img != None: log_image(img_name, subset_data_file) imsave(os.path.join(output_path, img_name)+ext, img)
def main(): ## ext = '.png' class_names = ['bird', 'bottle', 'chair'] ## input_path, output_path, list_file, subset_data_file = process_arguments( sys.argv) clear_subset_list_logs(subset_data_file) class_ids = get_id_classes(class_names) lut = create_lut(class_ids) with open(list_file, 'rb') as f: for img_name in f: img_name = img_name.strip() img = contain_class( os.path.join(input_path, img_name) + ext, class_ids, lut) if img != None: log_image(img_name, subset_data_file) imsave(os.path.join(output_path, img_name) + ext, img)
def convert2lmdb(path_src, src_imgs, ext, path_dst, class_ids, preprocess_mode, im_sz, data_mode): if os.path.isdir(path_dst): print('DB ' + path_dst + ' already exists.\n' 'Skip creating ' + path_dst + '.', file=sys.stderr) return None if data_mode == 'label': lut = create_lut(class_ids) db = lmdb.open(path_dst, map_size=int(1e12)) with db.begin(write=True) as in_txn: for idx, img_name in enumerate(src_imgs): #img = imread(os.path.join(path_src + img_name)+ext) img = np.array(Image.open(os.path.join(path_src + img_name)+ext)) img = img.astype(np.uint8) if data_mode == 'label': img = preprocess_label(img, lut, preprocess_mode, im_sz) elif data_mode == 'image': img = preprocess_image(img, preprocess_mode, im_sz) img_dat = caffe.io.array_to_datum(img) in_txn.put('{:0>10d}'.format(idx), img_dat.SerializeToString())