Ejemplo n.º 1
0
def prepareImage(imagePath):
    """ Prepare images before use it.
    """
    print("> Prepare image "+imagePath + ":")
    imname = ntpath.basename(imagePath)
    imname = imname.split(imname.split('.')[-1])[0][0:-1]       # 记录图片basename
    img = cv2.imread( imagePath )   # 加载图片

    if needCrop:
        dlib_img = io.imread(imagePath)
        img2 = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE)
        detector = dlib.get_frontal_face_detector()
        predictor = dlib.shape_predictor(FLAGS.predictor_path)  # 加载 dlib 检测
        dets = detector(img, 1)
        print(">     Number of faces detected: {}".format(len(dets)))
        if len(dets) == 0:
            print '> Could not detect the face, skipping the image...' + image_path
            return None
        if len(dets) > 1:
            print "> Process only the first detected face!"
        # 标记第一个人脸
        detected_face = dets[0]
        cv2.rectangle(img2, (detected_face.left(),detected_face.top()), \
            (detected_face.right(),detected_face.bottom()), (0,0,255),2)
        fileout = open(os.path.join(FLAGS.tmp_detect , imname + ".bbox"),"w")
        fileout.write("%f %f %f %f\n" % (detected_face.left(),detected_face.top(), \
            detected_face.right(),detected_face.bottom()))
        fileout.close()

        ## If we are using landmarks to crop
        if useLM:
            shape = predictor(dlib_img, detected_face)
            nLM = shape.num_parts
            fileout = open(os.path.join(FLAGS.tmp_detect, imname + ".pts" ), "w")
            for i in range(0, nLM):
                cv2.circle( img2, (shape.part(i).x, shape.part(i).y), 5, (255,0,0))
                fileout.write("%f %f\n" % (shape.part(i).x, shape.part(i).y))
            fileout.close()
            img = utils.cropByLM(img, shape, img2)
        else:
            print "> cropByFaceDet "
            img = utils.cropByFaceDet(img, detected_face, img2)
        cv2.imwrite(os.path.join( FLAGS.tmp_detect, imname+"_detect.png"), img2)
    img = cv2.resize(img, (trg_size, trg_size))
    cv2.imwrite(os.path.join(FLAGS.tmp_ims, imname + '.png'), img)
    return img
Ejemplo n.º 2
0
		cv2.rectangle(img2, (detected_face.left(),detected_face.top()), \
			(detected_face.right(),detected_face.bottom()), (0,0,255),2)
		fileout = open("tmp_detect/"+imname+".bbox","w")
		fileout.write("%f %f %f %f\n" % (detected_face.left(),detected_face.top(), \
			detected_face.right(),detected_face.bottom()))
		fileout.close()
		## If we are using landmarks to crop
		if useLM:
			shape = predictor(dlib_img, detected_face)
			nLM = shape.num_parts
			fileout = open("tmp_detect/"+imname+".pts","w")
			for i in range(0,nLM):
				cv2.circle(img2, (shape.part(i).x, shape.part(i).y), 5, (255,0,0))
				fileout.write("%f %f\n" % (shape.part(i).x, shape.part(i).y))
			fileout.close()
			img = utils.cropByLM(img, shape, img2)
		else:
			print "> cropByFaceDet "
			img = utils.cropByFaceDet(img, detected_face, img2)
		cv2.imwrite("tmp_detect/"+imname+"_detect.png",img2)

	img = cv2.resize(img,(trg_size, trg_size))
	cv2.imwrite("tmp_ims/" + imname + ".png",img)
#####CNN fitting ##############################
start_time = time.time()

# load net
try:
	caffe.set_mode_gpu()
	caffe.set_device(GPU_ID)
except Exception as ex:
Ejemplo n.º 3
0
			dlib_img = io.imread(image_path)
			img2 = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE)
			dets = detector(img, 1)
			print(">     Number of faces detected: {}".format(len(dets)))
			if len(dets) == 0:
				print('> Could not detect the face, skipping the image...' + image_path)
				continue
			if len(dets) > 1:
				print("> Process only the first detected face!")
			detected_face = dets[0]
			## If we are using landmarks to crop
			shape = predictor(dlib_img, detected_face)
			nLM = shape.num_parts
			for i in range(0,nLM):
				cv2.circle(img2, (shape.part(i).x, shape.part(i).y), 5, (255,0,0))
			img, lms = utils.cropByLM(img, shape, img2)
		cv2.imwrite(data_out + "/imgs/"+imname+"_detect.png",img2)

		lms = lms * 500.0/img.shape[0]
		fileout = open(data_out + "/imgs/"+imname + ".pts","w")
		for i in range(0,lms.shape[0]):
			fileout.write("%f %f\n" % (lms[i,0], lms[i,1]))
		fileout.close()
		img = cv2.resize(img,(500, 500))
		cv2.imwrite(data_out + "/imgs/"+imname+ ".png",img)
		outs.write("%s\n" % (data_out + "/imgs/"+imname+ ".png"))
		countIms = countIms + 1

##################################################
##### Shape fitting ############################## 
# load net
Ejemplo n.º 4
0
def run():

	###################################################
	##### Prepare images ##############################
	countIms = 0
	with open(fileList, "r") as ins, open(data_out + "/imList.txt","w") as outs:
		for image_path in ins:
			# image_path = image_path[:-1]
			print("> Prepare image "+image_path + ":")
			imname = ntpath.basename(image_path)
			#imname = imname[:-4]
			imname = imname.split(imname.split('.')[-1])[0][0:-1]
			img = cv2.imread(image_path)
			## If we have input landmarks
			if len(landmarkDir) > 0:
				lms = np.loadtxt(landmarkDir + '/' + imname + '.pts')
				img2 = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE)
				nLM = lms.shape[0]
				for i in range(0,nLM):
					cv2.circle(img2, (lms[i,0], lms[i,1]), 5, (255,0,0))
				img, lms = utils.cropByInputLM(img, lms, img2)
			else:
				dlib_img = io.imread(image_path)
				img2 = cv2.copyMakeBorder(img,0,0,0,0,cv2.BORDER_REPLICATE)
				dets = detector(img, 1)
				print(">     Number of faces detected: {}".format(len(dets)))
				if len(dets) == 0:
					print('> Could not detect the face, skipping the image...' + image_path)
					continue
				if len(dets) > 1:
					print("> Process only the first detected face!")
				detected_face = dets[0]
				## If we are using landmarks to crop
				shape = predictor(dlib_img, detected_face)
				nLM = shape.num_parts
				for i in range(0,nLM):
					cv2.circle(img2, (shape.part(i).x, shape.part(i).y), 5, (255,0,0))
				img, lms = utils.cropByLM(img, shape, img2)
			cv2.imwrite(data_out + "/imgs/"+imname+"_detect.png",img2)

			lms = lms * 500.0/img.shape[0]
			fileout = open(data_out + "/imgs/"+imname + ".pts","w")
			for i in range(0,lms.shape[0]):
				fileout.write("%f %f\n" % (lms[i,0], lms[i,1]))
			fileout.close()
			img = cv2.resize(img,(500, 500))
			cv2.imwrite(data_out + "/imgs/"+imname+ ".png",img)
			outs.write("%s\n" % (data_out + "/imgs/"+imname+ ".png"))
			countIms = countIms + 1

	###################################################
	##### Shape fitting ############################## 
	# load net
	MainModel = imp.load_source('MainModel', "../CNN/shape_model.py")
	net = torch.load(model_path)
	net.eval()

	mean0 = np.load(mean_path, encoding='latin1')
	mean = mean0['arr_0']
	net.cuda()

	print('> CNN Model loaded to regress 3D Shape and Texture!')
	model = scipy.io.loadmat(BFM_path,squeeze_me=True,struct_as_record=False)
	model = model["BFM"]
	faces = model.faces-1
	print('> Loaded the Basel Face Model to write the 3D output!')
	## For loop over the input images
	count = 0
	with open(data_out + "/imList.txt", "r") as ins:
		for image_path in ins:
			if len(image_path) < 3:
				continue
			image_path = image_path[:-1]
			count = count + 1
			fig_name = ntpath.basename(image_path)
			outFile = data_out + "/shape/" + fig_name[:-4]
			print('> Processing image: ' + image_path)
			im = cv2.imread(image_path)
			im = cv2.resize(im, (224, 224)).astype(float).transpose((2,0,1))
			im = im - mean
			#im = im/255
			im = Variable(torch.from_numpy(im).unsqueeze(0).float().cuda())
			features = net(im).data.cpu().numpy()
			## Writing the regressed 3DMM parameters
			np.savetxt(outFile + '.ply.alpha', features[0,0:99])
			S,T = utils.projectBackBFM(model,features[0,:])
			print('> Writing 3D file in: ', outFile + '.ply')
			utils.write_ply(outFile + '.ply', S, T, faces)

	##################################################
	##### Bump map regression ########################
	print("Regress bump maps")
	bumpMapRegressor.estimateBump(bumpModel_path, data_out + "/imList.txt", data_out + "/bump/")
	##################################################
	##### Recover the 3D models ##################
	print("Recover the 3D models")
	print("./TestBump -batch " + data_out + "/imList.txt " + data_out + "/3D/ " + data_out + "/shape " + data_out + "/bump " + data_out + "/bump ../3DMM_model/BaselFaceModel_mod.h5 ../dlib_model/shape_predictor_68_face_landmarks.dat " + data_out + "/imgs " + data_out + "/imgs/ 1");
	os.system("./TestBump -batch " + data_out + "/imList.txt " + data_out + "/3D/ " + data_out + "/shape " + data_out + "/bump " + data_out + "/bump ../3DMM_model/BaselFaceModel_mod.h5 ../dlib_model/shape_predictor_68_face_landmarks.dat " + data_out + "/imgs " + data_out + "/imgs/ 1");