Ejemplo n.º 1
0
from pandas import HDFStore
from utils import dask_cov
from PyAI import *


with HDFStore("test.hdf5") as f:
    Close = f.Close
    close = Close.as_matrix()
    open = f.Open.as_matrix()
    names = f.Close.columns.tolist()

    var = close - open
    var -= var.mean(axis=0)
    var /= var.std(axis=0)
    var = var.T

    # Create unsupervised labels
    labels = cluster.AffinityPropagation(0.7).fit_predict(dask_cov(var))
    brain = Brain(var, labels)

brain.init_data_transformation(TRANSFORMATION.Standardize(), TRANSFORMATION.PCA.RandomizedPCA())
brain.init_naive_bayes(NAIVE_BAYES.REGULAR)
Ejemplo n.º 2
0
from utils import dask_cov

# Gather data from databases

with h5py.File('close.hdf5') as f:
    close_d = f['/quotes/close']
    open_d = f['/quotes/open']

    close = da.from_array(close_d, chunks=(100, 100))
    open = da.from_array(open_d, chunks=(100, 100))

    var = close - open

    # Standardize data
    var -= var.mean(axis=0)
    var /= var.std(axis=0)
    var = var.T

    # Create unsupervised labels
    labels = cluster.AffinityPropagation().fit_predict(dask_cov(var).compute())
    store = HDFStore('quotes.hdf5')
    names = store.quotes.minor_axis

    brain = Brain(var.compute(), labels)
    data = var.compute()

brain.init_data_transformation(TRANSFORMATION.Standardize(), TRANSFORMATION.PCA.RandomizedPCA())
brain.init_naive_bayes(NAIVE_BAYES.REGULAR)